
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD465805

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; MAR 1965. Other
requests shall be referred to Army Ballistic
Research Laboratories, Aberdeen Proving Ground,
MD 21005-5066.

USABRL per ltr, 5 Nov 1965

BRL
1273
c. 3A

r»-
Cvi

OH
—I

CD

I

ifint I &n^'

RRI R l?73
• » » ^-» •*•

REPORT
ii AN i r\ -i <*
INU. I^f3

THE FORAST PROGRAMMING LANGUAGE FOR

ORDVAC AND BRLESC (REVISED)

BY Lloyd W. Campbell
nionn A Rprlf

MARHH 1065 •/Y
£iu i Apr; . 1£D.

2J-005

QOUNTEn i*

U.S. ARMY MATERIEL COMMAND

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

Qualified requesters may obtain copies of this report from DDC.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

BALLISTIC RESEARCH LABORATORIES

REPORT NO, 1273

(Supersedes Report No. 1172)

MARCH 196?

•AM

-..-•- ; - . 1-1 9 1 r^nn

THE FOPAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

Lloyd W. Campbell
dlprm A. Ber>k

RDT & E Pro.iect No. lPOll+SOlAll+B

T> n r\ TT T T\T n n "D r\ TT T\T T\

BALLISTIC RESEARCH LABORATORIES

JA.EjJrW.U_L 1W. -L-C | j

LWCampbell/GABe ck
Aberdeen Proving Ground, Md.
TUT i_ -i r\£ r- mrcn xyo?

THE FORAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

ABSTRACT

FORAST is a. procedure oriented programming language designed for

use on the ORDVAC and BRLESC computers at BRL. Although it was designed

for professional programmers, FORAST contains sufficient simple concepts

to make it usable by a novice or journeyman. It permits the use of

arithmetic formulas, some English word statements, and each computer

accepts its own symbolic or absolute machine language. The latter

feature permits the professional programmer to use the full power of

each computer.

TABLE OF CONTENTS

rage

I. INTRODUCTION 9

II. CHARACTER SET 11

III. NAMES AND ADDRESSES 12

IV. ARITHMETIC EXPRESSIONS 15

V. ARITHMETIC FORMULAS 18

VI. ENGLISH WORD STATEMENTS 19

x . uv jju 20

2, SET... 22

3. SETEA 23

k. INC 23

5. COUNT 23

6. IF 26

7. CLEAR 2c

8. MOVE 29

9. ENTER 30

10. READ and. PRINT or PUNCH 32

11. HALT 36

T7TT T»nrS}AlLf HA'DTl •CinOl/Am -V7 w J--L. . inyuiini'i UJUlLf X* ULU'Ull J) [

VIH. USE OF LOCATION FIELD <ö

TABLE OF CONTENTS (Cont'd)

Page

IX. PSEUDO ORDER TYPES 42

A. PROB 42

B. BLOC 44

C. SYN 48

D. LOC 49

E. LAST 51

F. CONT 52

f% T -et an / T*WJ _ j_ j _ n>3 n.J. "O-*.-* M4- 4 « » \ Co \i. J-U-Di. ^LIIC biuimry euiu ouuc rrxuuxujj; ••••••••••••••••• .; j

H, DEC 56

I. DEC=» 58

J. FORM 59

K. SEXA 67

L, END 68

M. DATE 69

N. CCnM 69

0. MODE 69

P. STOR 71

Q. NOS 71

R. FTTS 72

S. ASOT 73

T. SUBR 73

U, ALFN 73

V. O.T 74

TABLE OF CONTENTS (Cont'd)

Page

X. LIST OF SUBROUTINES Ik

XI. TRANSLATOR ERROR PRINTS 95

B. BRLESC 97

XII. RUN ERROR PRINTS 100

A. ORDVAC iOi

•R "RT3T/PQP 1 no ±J • i;iuiuuu< •••.•.«.•.........*»•...».*......•*•.••••..•.•. iuc

XIII. USE OF SOME SPECIAL NAMES 105

ERROR 105

N. PROB 106

i rrr

M. DUMP 107

XIV. MACHINE ASSEMBLY LANGUAGE 108

A. ORDVAC. 108

XV. OPERATION AND SPEED OR ORDVAC TRANSLATOR 118

XVI. OPERATION AND SPEED OF BRLESC TRANSLATOR 119

1 ?P

SUMMARY OF INSTRUCTIONS FOR RUNNING FORAST PROBLEMS

ON BRLESC 125

iü|

n
I

TABLE OF CONTENTS (Cont'd)

Page

APPENDIX A - SYMBOLIC OKDVAC ORDER TYPES 135

APPENDIX B - SYMBOLIC BRLESC ORDER TYPES 136

APPENDIX C - SYMBOLIC C ADDRESS FOR BRLESC

INPUT-OUTPUT ORDERS 138

APPENDIX D - NUMBER OF ELEMENTS IN TRIANGULAR ARRAYS 139

APPENDIX E - SUMMARY OF PSEUDO ORDER TYPES. 1^0

APPENDIX F - EXAMPLES OF ASSEMBLY CODE AND STATEMENTS l4l

APPENDIX G - SAMPLE PROBLEMS 142

I. INTRODUCTION

FORAST is a programming language that is being used on the ORDVAC

and BRLESC computers at BRL. It allows a programmer to write a computer

program in a language that is closer to the English language and con-

ventional mathematical notation than the numerical machine language.

This simplifies the task of writing a program, makes it easier for

another person to read, and allows the same program to be translated

and run on either ORDVAC or BRLESC. While FORAST is a "problem-oriented"

language, it is closer to a good machine language than most similar

languages. FORAST also allows each machine to translate its own assembly-

language so that the professional programmer may use the full power of

the computer in any program.

The following objectives influenced the design of FORAST:

1. Fast translation with "load and go" operation.

2. Allow full usage of machine's capabilities.

3. Generation of efficient object programs.

k. Translator must fit J+O96 word memory.

5. Human readability.

6. Used primarily for mathematical problems.

7. Compatability between ORDVAC and BRLESC.

While many of the above objectives conflict with each other, an

attempt has been made to achieve an o-ntimum conrnromise of the conflicting

objectives.

Ttip fnl Inuincr nrncrrnm iri 1 1 i "I "I liR-hya+.f» a fHirml*» 'PTlRAPiT nrncrrom. Tt\

will read a pair of floating point numbers called X and Y, compute a

number called Z that is the square root of the sum of the squares of

X and Y, and will print the three numbers, X, Y and Z in a floating

point form. Each line of coding v<*nd nence eacu icey-puncneu. caru; may

contain either one or more machine orders in assembly language or one

or more arithmetic formulas or statements. ^The f> symbol is used to

separate two separate statements on the same line).

1«1 READ (X)(Y)

Z = SQRT (X**2 + Y**2)

PRINT (X)(Y)(Z)0 GOTO (l.l)

T1TITT\ Stau \J\JX\J \1'J-/

This example illustrates four types of statements allowed in FQRAST.

rm TDTPAT> «a.n^-AM%AM4. «11~.*n «^VAM» 4-r^ VA ^*AOA ^"^^»TTI ,-»r>-v^^ T^ ^ r~Ast/^*^ -Lilt! rVP.MI f t) 00. OdllCIi O aXXUWD UU1UUCX O UU UC 1CQU 11U1U ^CLJL U-k? • iUC DC^VllU

statement is an arithmetic formula. On the left of the equality sign

is the name of the quantity that is to he computed. The formula or

arithmetic expression to the right of the equality sign expresses the

arithmetic that the computer should do to compute this new arithmetic

quantity. Note that X^ is written X**2 since superscripts or

subscripts cannot be key punched as sucht SQRT is the standard name

that is used to represent the square root function. The FRINT state-

ment allows numerical results to be punched on cards. The GOTO state-

ment allows control to be directed to another statement rather than

to the next one. Statements are done in the sequence that they are

written except when a GOTO statement is used to specify otherwise. Note

that the first statement has been given a "location" name of 1.1 and

nence uuxu \±,±j means uu go i>u oueii, cucn-cuicnu.

The last card (physically) of every FQRAST program must he an END

card that contains a GOTO statement that determines the initial state-

ment to be done in the running program. It is well to remember that

all FQRAST programs are done in two steps, first the entire symbolic

program is translated into a numerical machine language program ^J.^^

assigned storage locations, and secondly, the program is run and the

1U

desired computations performed and results produced.

The END card signals the completion of the translate phase. No

separate symbol is needed to signal the end of the running program; the

program runs until all data cards have been utilized. (An extra blank

card. a~c xne end 01 tile deck is required. ; This its the no.riii&l way of ^i _i_i-

stopping such programs at BRL. However, if no data cards are used in

the final part of a program, a GOTO (N.PROB)^ statement should be used.
(a— „„„,. 1A^ rTn-irtif«^ -t c! s TXAT.T G + Q 4-AVMA *-»4- + V»a + mmr ol c? r\ Vvo nca^ VirvUonr

it is better to use GOTO (N.PR0B)# because this will cause the computer

to stop at a standard "problem completed" halt.

II. CHARACTER SET

FORAST allows the use of the 26 capital letters, the 10 decimal

digits, the decimal point, and prime (apostrophe) without any special

significance attached to any one of these characters. These characters

may be combined to make-up the names and locations of variables and

instructions.

The following characters have special meanings and must not be

used in names:

Card Punches Symbol and Meaning

y -

y

k

h

k

8
1

8

8
8

is subtraction

* is multiplication

/ XO UJ. V LU1V11

(is left parenthesis

) is right parenthesis

= is eauals

3 - 8 is used to indicate indexed addresses

11

Card Punches Symbol and Meaning

x - p - o -~* j.0 J.CDD unan

0-5-8 > is greater than

** is exponentiation

/^t is end of card (rest of the card is ignored)

< = or = < is less than or equal

> = or = > is greater than or equal

The blank character is allowed and is ignored except when it is

included in alphabetic information that is in a PRINT, PUNCH or ALFN

statement. The symbol b may be used to indicate a blank column to the

key punch operator.

The letters I and 0 must be written so as to be distinguishable from

the numbers 1 and 0. It is suggested that the letter I be written with

definite crossbars at top and bottom and the number one be written as a

straight line. A script letter ©* that is also larger than zero is

recommended. Some care must also be taken when writing S's and 5!s, Z!6

and 2's. B's and 8ls and all other characters. Programmers are urged to

check the key punching of their programs,

III. NAMES AND ADDRESSES

The programmer may use symbolic names to represent the names of

variables and the locations of instructions and constants. The FÖRAST

translators translate these names into numerical machine memory addresses.

Hence each symbolic name represents a memory cell. FCRAST also allows

the use of absolute numerical addresses.

Symbolic addresses may be chosen so that they consist of one or more

characters with the following restrictions:

1. Must not contain any of the "special" characters. (See II)

2. Must not contain more than six characters unless the characters

after the first six are not required for unique identification.

(BLOC names on BRLESC may have as many as eight characters

with some restrictions. See page U5)

3. Must contain at least one character that is not a decimal digit,

for example, a decimal point or some alphabetic character.

k. The leading character must not he zero. A leading zero is used

to indicate absolute sexadecimal addresses.

5. SELF can be used only to refer to the "location counter". (See

page 40).

6. Certain names (SIN, COS, LOG, etc.) have been reserved as the

names of subroutines and should not be used as the names of

variables. (See pages 75-95 far the complete list of subroutine

names.;

Some examples of symbolic names are X: TU: A3; UJl: 1.1: SINA. The

name "1.1" may be either a symbolic address or a floating point number.

If it is written in an arithmetic expression, it is a number, otherwise

it is just a symbolic name. However, if it is followed by a comma, then

it would always he a symbolic name.

Absolute machine addresses may be written in either decimal or sexa-

ue<J ±llL<x±- • oCA.cxu.cu_uiia._i_ auuicööcö iu.u.0 u IJCXVC a, u icaüu vjiic j.caaiiL^ __ciu a-iiu.

decimal addresses must not have a leading zero. Sexadecimal addresses

are never used as numbers because non-zero numbers must not have a lead-

ins zero unless the first non=zero character is a decimal ^oint. The

single character 0 (zero) will be a number if it appears where numbers

are allowed. Decimal addresses will be used as numbers in arithmetic

expressions unless they are followed by a comma. Commas are not allowed

in numbers'. Negative decimal addresses may be written and will be stored

as 2's complement addresses. The characters K, S, N, J, F, L, are used

for the sexadecimal characters ten, eleven, . . . , fifteen. For BRLESC,

absolute index register addresses must lie in the range 1 to 63 in decimal

or 01 to 03L in sexadecimal.

Indexed addresses may be written almost anywhere in FORAST. A

comma is used to indicate that an address is indexed and also separates

-l-Vij^ I-»-V-I-IWIQ -mr Q i-3 A -v»£>c. c. -P-v-i/-vi-in 4-Vl."\ -? m .-3 /-\ V Q^/^vmnn A>-1 Q/^^ViAPC YttO TT ViC. T VIA a "V Ch ri UJ-LC: y± JU.liO.XJr O.U.U.J. COO J. -L Will OJ.XC X1JUCA GLKJ.\J.± KZ&i3 • .flli- o.^A\»cx. COO HiO'J' U*- j. 1. i\JL\-i SL\~ \JL

1 o

by one and only one index register. The actual or effective address

used at run time is the sum of the ririmarv address and the contents of
 a _JJ t,ne inaex register, indexing may oe usea. wix.n any Type oi an auaress,

not just those that are defined as blocks or arrays. Indexing is in

addition to, not in place of, constant "subscripts", thus,, if Bl to B6

is a block ^see BLOC page hkj, it is permissible to write B3,J. Some

examples of indexed addresses are A,l: B4,J: ,E: 42,14: C,14: C,OF:

,0F. NOTE; A,-1 is not permissible. To get the same effect, first

puu -J. xii uu n. ciiiu. UJ-ICII u.oc n,iv.

Decimal or sexadecimal increments may be written with any symbolic

address. Thus a constant may be added or subtracted from a primary

address at translate time. In arithmetic expressions and formulas

(including the left side of formulas;, the increment must be written

after the index name and the index name and increment enclosed in

parentheses. A, (jt-l): B, (l-2): X4.(+3) are examples of addresses with

increments as they must be written in arithmetic expressions an^ formulas.

Note that the increment still may be used even if there is no index

-rpcrlst.pr. thus XU.f + ^l is an address that is three more than the address

of X4 and is not indexed. A sign must be used to distinguish an

increment from an index register address. In any place other than

arithmetic expressions, (arithmetic expressions are allowed only in

arithmetic formulas and IF statements) the parentheses are not

necessary and the increment may be written either after the primary

address or after the index address. Thus A - 3: 4R3 + 6,11: X,J -

are legal addresses any place other than arithmetic expressions and

formulas.

11+

Ik

NOTE CAREFULU: Symbols of the form A + 3 outside of an

arithmetic expression refer to the address that is three greater than

the address assigned to A. It is safe to use such an expression vhen

referring to numbers since all numbers occupy one machine word. However,

such an expression should not be used when referring to locations of

statements unless the programmer ii familiar with the amount of code

that is generated by the statements. Thus, if A is a location, beware

of "GOTO (A+3)#". The machine language of ORDVAC is very different

from that of BRLE5C and thus the number of words produced by the compiler

from a particular statement may be quite different on the two machines.

Note also that Al + 1 is not necessarily the same address as A2. They

ttle uxxe öcuuc ULuJy J.J. «a. auu r\c axe ±uuaijiuuQ j.11 a. t-uiiDctuuiyc u-n_»^-xv

that started at A or Al and includes A2.

IV. ARITHMETIC EXPRESSIONS

Arithmetic expressions are allowed only in arithmetic formulas and

IF statements. They are used to indicate the arithmetic operations that

the computer should perform at run time and the special characters
-a IT -a j_ TX ~ .._~.a 4- ~ 4 .«.a 4 A*»4-~. -n,« -4--.«^«« n«^ nA_i-iA«n*-t rt-P -i-v%yv UebCI'-Lueu ±11 J.X axe Uüeu i/U xixuxi^exuc i/ixc OJTLJCO emu. oc^ucm-c 'ji one

desired operations. Arithmetic expressions are written much like they

are in normal algebraic and mathematical usage. However, some special

rules are necessary because evervthin<7 must be written on one line as

a consecutive string of characters so that it is key punchable. Thus

superscripts, subscripts, and the normal over and under method of writing

fractions are not allowed and require special rules.

The operations that are allowed are:

1. + and - : addition and subtraction
f-i .U. II / "1 _L J -IJ J_J 3 J J t I __
d.. ~" ana / j maiLipimaiiüxi auu U±VJ.C>±UXX

5. ** ; exponentiation

k. Single-valued functions of one variable, (subroutines)

I-

Parentheses may "be used to group these operations into any desired

sequence and are used in the same manner as they are in mathematics.

In the absence of parentheses, the operations that are lover on the

above list are performed before those that are higher on the list. Thus

mill +1 -«I 1 r>n + H rm la rir\no ^ftfftw» Q il^H +-./-»n enV»w»n+A r\£*a häfrti» H1v<aHnn
1UUO. VX^O.^^UUJ.WU -A. AJ 1AV/UV- W*i VA V. U.UUA U^UU) »-» V* k^ A. VJ W ^ -1. A A»— AJ l/^-i VA V, VA A. » J. AJ -A W A A ,

exponentiation before subtraction, etc. Hence A + B/C**2 is the same

as A + (B/(C**2)) and C**2 is the vay C is written. For successive

operations that are on the same level- special rules afvnlv when laaren-

theses are omitted. Successive add or subtract operations are grouped

from the left, thus V + W - T is the same as (V + W) - T. Successive

multiply or divide operations are grouped from the right, thus A * R/S * S

is the same as A * (R/(B * S)). Since multiplication and division are

grouped from the right, parentheses are only required around any numerator

or denominator that involves addition or subtraction and usually requires

less parentheses than a left to right grouping. It also leads naturally

to a more efficient one-address machine code.

Twvnl 1 pd Bmltinlicatior '» allowd nv writing a name *• lacpnt t.n

either a left or right parenthesis or by following a right parenthesis

with a left one. Thus A * B may also be written as (A)B or ACE) or

(A)(B)S It is not incorrect to use a redundant * symbol where a multi-

plication is so implied. Note that AB is a single symbolic address and

does not denote multiplication of A times B.

DUDrUUl/ilietS Iia.VJ.IlJJ UIIX^ unc aj/jjuuiiciiij emu. vjnc J.COLU.U AAia.jr u^ liotvi AH

arithmetic expressions by writing the standard name of the subroutine

followed by its argument enclosed in parentheses. The argument may be

any arithmetic expression and may use subroutines. See page 75 for the

standard list of subroutines allowed in arithmetic expressions.

LOG(A+B) ; ARCTAN(X + EXP(R-S)) are some examples of the use of sub-

routines in arithmetic expressions.

Successive exponentiations should always be grouped by using

parentheses. Without parentheses, ÖRDVAC groups them from left to

right and BRLE3C groups them from right to left as they should he.

The power of the exponentiation may he any integer or non-integer

number or arithmetic expression. Small integer negative numbers may

and should be written without being enclosed in parentheses, i.e.

_2; **-5. However "+" is illegal. A quantity being raised to

a non-integer power must always be positive because the logarithm of

that number is used. A power of «5 causes the square root function

to be used. Constant integer powers of fifteen or less are accomplished

by in-line multiply orders plus one division order for negative integers.

Three types of arithmetic expressions are allowed, they are float-

ing point, integer and fixed point fraction. However, not more than

one type of arithmetic may be used in the same arithmetic expression.

The type of arithmetic used in an expression is usually the MODE type.

(See page 69)« However, it may be changed for any one expression by

writing "FLT(" or "PIX(" or "INT(" in front of any arithmetic formula

arithmetic expressions are converted to the form required for the type

of arithmetic being used in the expression. Fixed point fractional

numbers must be less than one in absolute value and must have decimal

points. A subroutine and an ENTER statement may be used to change variables

from one type of number to another. The standard subroutines allowed in

formulas all assume floating point arguments and hence must be used only

in floating point expressions. However, ABS (absolute value) may be used

with fractions and integers that are not stored in index registers. Index

registers on BRLESC are not full words and will always seem to be positive

to an ABS operation! Division involving a "negative" index register on

BRLESC usually gives incorrect results and a negative integer product

on ORDVAC will have an improper zero sign bit. The power of exponentiation

17

must be a positive constant integer of fifteen or less in integer or

fractional expressions. ^BRLESC does allow integers to be raised

to any variable power or any constant power that does not have a

fractional part of .5 exactly.)

uons"&airG ni miners writ;Tien in arixnmeT-ic expressions must, ODey t-ne

following rules:

(1) Commas are not allowed. '\

(2) Exponents and scale factors are not allowed.

(3) Signs are not allowed except for a minus sign after **.
/ "Oj .—«-.M mwj T -I V— .._~.J nn »J*3 ~» M*.V.4..*««_4- ..—^.-».t 4-.»•«.«. »HJ 4-1»« V oxgiiB K1J.X Lie uscu a» auu ux Buuwati, ujciauuie emu one

numbers will be stored as positive.)

(4) Leading zeros are allowed only if the first non-zero character

is a decimal ^oint or if the number is zero5

(5) Fixed point fractions must always contain a decimal point and

be less than one (sixteen on BRLESC) in absolute value.

V. ARITHMETIC FORMULAS

The arithmetic formula is the type of statement that is used the most

in writing FÖRAST programs. This statement has an arithmetic expression

4-VA4- 4 a 4-/-1 Va aiFnlimfA^ YJV» * ++• Q in +•/-* +V\ö T^ rrYi+ r\-P on — AhOTOA + or O«/^ *f""ho
l>l_ia U J.O L»U LIC G V CLJLUCJV bCU W X X. U >J<^ 11 \J^J ^U^ X a. f^LJ, v v./JU t*ii — WUSM I*\. •-"" J- wi"* u**.v,

result is stored in the address specified on the left of the =. The

result may be stored in as many as fifteen different places by specifying

more than nn<» address and havine more than one = svmbol to the left of
._ J__1 -1.1 UJJ tne aritnmetic expression, rnus A = 1 = A means uo uaxe uue quanoiuy

named A and store it in the memory locations called X and Y. Note that

the arithmetic expression may be just a single variable or number! The

äT T ATj-r H « .n-u-ft-M-nl J-N Olli n + -v»*> 4- ö (?/Mna Q V* 4 + VlT»lö + 4 r> ^ftVnWI 1 T Q O • lUl±UWlUk CAOU1U±CO IXXUDUJ-QIJC DVUi^ ax x uiiUK UJ-w luIuiuxuLit

Y = 0 i FLT(Q = A = B** - 2#
V _ V j. irf V T _ V T 4. OTW/'AJ.TJ T Wf T*T?
A = A T P^O AJX — i>-L UlB^H'iljl//WjU"U

X = X, (+3) + % R,(J+2) = Tl ** 2 + S ** COS(X5-X2)

FIX(X2,J = -XI <f> (Note: the index register J, like any
other variable, is set only at run time)

1«

The formula X = X + 3 shows that this type of statement is not

an equation that is to be solved. This example means that the value

of X should be increased by three and stored back into the same memory

location.

Parentheses may be used to group operations in the usual manner.

They may be omitted at either end of the arithmetic part of the formula

because all right parentheses that are not closed on the left will auto-

matically be closed at the = symbol and all left parentheses that are

not closed on the right will automatically be closed at the % at the

end of the formula. The number and amount of nesting of parentheses is

practically unlimited. The amount of nesting is limited only by the

fact that the translators can save only 30 operations that have been

encountered by the left to right scan but not coded because of some

right to left grouping, either by parentheses or by a succession of

multiply and divide operations. Nesting that cause operations to be

grouped from the left is essentially unlimited.

The operations of + and - may be used as unary operations only at

the beginning of a formula or after a left parenthesis. The - symbol

may also be used as a sign after ** if it is followed by a constant

Kii lirfKoT« TT-» -to -t a + V10 r\r»l ir DvnaT»+ -tr^n + /-\ +V*ö >»n ~i a +V»o + +T.rA r»T\a>»Q + -T rwi e-»rmV>Al c?

(+ - */) must not be written adjacent to each other.

VT. ENGLISH WORD STATEMENTS

ruriAox ttxxowB one use OJ. a lew angxisn worus uu iiiBuruuo x-ne

computer to do certain operations. There are eleven of these statements,

each of which begins with a special English word that determines the

arithmetic formulas. Arithmetic expressions are not allowed in any of these

statements except in the relational clauses of the IF statement. All

other statements use only addresses which may have an increment as

described in III. The list of permitted English word statements is:

GOTO: SET: SETEA: INC: COUNT: IF: CLEAR: MOVE: ENTER: READ and PRINT

or PUNCF- TTAT/T"

General Form: GOTO (Location to go to)%

The words GO TO (or GOTO) may be used to tell the computer to

go to a location of a statement that does not follow the statement that

has just been done. Statements are normally done in the same sequence

they are written in, however this GOTO statement (and a few other state-

ments) may be used to change that sequence. The location of the state-

ment to be done next is enclosed in parentheses. Some examples are

G0TQ(BQX2)£ G0T0(START;7b

GOT0(^.2)£ GOTO(,E)#

Note that the address may be indexed and the last example illustrates

how "remote connections" can be handled in FORAST. Since an index

register can hold an entire address? not merely the customary increment

to an address, the address to go to nay be whatever address has been

last set into an index register (by a SET statement) in the running

program. This idea of using index registers for "address substitution"

may of course be used in any type of statement that allows indexed

addresses. Note that the addition of the contents of an index register

to the primary address is still performed and while the primary address

is usually blank (zero) in an indexed GOTO statement, it does not have

to be blank. Thus 3,V means to add 3 to the contents of V to get the

address used and 3,V is the same as ,(V+3).

CLKJ

üince UKLIVAL; _uee L-Lj; ca.s DU"cn ieiu a.nu rigut ui-uei-js \a uruers

per word), the GOTO will go to the proper side of the word if the

address is not indexed. Since the side it goes to is determined only

uy uiic primary a.u.u.P63S, caution must uc ussu Wiui inu.exeu au.u.r6SS8s.

The effective address of all indexed addresses should be the location

of a left order. This can he accomplished hy using location names

that "besin with a letter <~I+VIOY» +vion p -Pr^p a"'! 3_°''*Q"'~"'rvnc! +V10+- Q^O

transferred to by an indexed GOTO. (See VIII page 3Ö-)

General Form: GOTO, index add.(Loc. to go to when index = IJLoc

to go to when index = 2) $

This statement will cause a program to go to different places

depending on the contents of an index register. When the contents

of the index register is an integer i, the ith location name on the

list of location names in this statement will be used as the location

of the next statement that is to be done. For example;

G0T0,I(A)B),K#

W J L-L KJ.<J a, \J\J J.\J \CL J ö L/O. U^iti^.Ji o niiuii _i_ — _i_ • "-11UL t-*i \j v j. \»» ^ j_* ^ t_> I_M-*« O^-ILLV-ü <_f nnv,-iJ

1=2 and a GOTO(,K) statement when 1=3-

enclosed in parentheses. For example;

GOTO,(Jl - l)(Ll)L2)#

will cause a GOTO(Ll) when Jl = 2 and a G0T0(L2) when Jl = 3- When

r-, v-, -i vi n -V-« Q*-n s?. r> +• n n n «-JS^ **~^ö ÖV+ XQ *' T ö-f+ t^Q-»-»^iV-l+Vli=i<^-Ttl "1 «T« V>£iri111 V»d/5 VlCl-P/—IVCi
CXI1 ULLI C1J1C11 U -LO U.ÖGU.J UJJ.C tÄUXO. J-tX ^ pal Uiiijll^k)J.ü -UO 1 t^Uli i-U U»L-J.W-L*_

the first location name on the list.

21

For ÖKDVAC, each location on the list may go to either a left order

or a right order; they don't all have to go to the same side.

If by error, the value of the integer is zero, the computer will

cycle on one jump order. If the integer is too large, it will go on

to the program at some point below this statement,

2. SET

Form: SET (index add. = add. to put in index register)

This statement should be used to set index registers to a

v;uiio ijanu vu-j_u^ .

value of the address itself (notthe contents of) written on the right

of the = is put into the index register specified. If this address is

a decimal or sexadecimal base number, then that number is put into the

index register. If this address is a symbolic name, then the address

that has been assigned to that name is put into the index register.

Hence this statement allows index registers to be set to addresses that

have been assigned to symbolic names of variables or locations. Indexed

addresses are not allowed (See 3- below) but a decimal increment is

allowed when the address is symbolic. Some examples of SET statements

are:

SET(I=0)J=2)A=A2$ SET(B=0KNJ+)$;

SET(V=-3)(N=+2)G0T0(6.2)#

Note that any number of index registers may be set with one SET statement

with each one separated from the previous one by a right parenthesis or

a right and a left parenthesis. A GOTO statement may be included at the

end of a SET statement without a $ in between.

22

5. SETEA

General form: SETEA (index add. = Indexable address)

This statement is the same as the SET statement except that

the address on the right of the = is indexable and GOTO is not allowed

as part of this statement. Some examples of SETEA statements are

SETEA(I=A,JH

SETEA(K=B,M+2) P = lU,U7)#

This statement sets the effective address into the index register specified.

k. INC

General form: INC (index add. = Index add. + amount of increase

or decrease)

This statement should be used to increase index registers by a

constant amount. The index register name that is written after the =

(the same name should appear on the left of the "=") is increased by the

address itself (not the contents of) that is written after the first +

or - sign that appears to the right of the "-", The amount of increase

may be symbolic and may have an increment but cannot be indexed. A minus

sign may be used to indicate a decrease only if the amount is not symbolic.

Some examples of the INC statements are

INC(I=I+l)£ INC(J=J-2)#

INC(S=S+03K)Y=V+10)A=A+N-1 $

INC(R=R+4l)G0Tu(,E;#

This statement may be used to increase (or decrease) any number of registers.

A GOTO statement may be written at the end of an INC statement without a p

in between.

5. COUNT

General Form: COUNT (max. count) IN (index Reg.) GOTO (Loc. for

repeating loop)

23

loop is done and to also increase one index register. This index

register (specified after IN) is increased by one (or another amount

if it is specified) until it is greater than or equal to the maximum

count specified after COUNT. (A symbolic "max. count" address will

be used as an index register whether a comma precedes it or not). The

increase occurs before the comparison! If the index register (speci-

fied after IN; is set to zero at the beginning of the loop and increased

(by one only)in a COUNT statement at the end of the loop, then max.

count is the total number of times the loop is to be done.

The amount to increase the index register may be specified

in three different ways. It may be written after IN by writing the
. J — -Si «~._..1 — «« «TTÄ,»ÄJ -I« 4-V.A TKTn n4-n4-^m^n4- -I rt (T _ T J- 0\ Some i^yLie «JJ. i uruiLua, etc» eixxuwcu. JLLI OIJC XHW owivauciii,, x.c \J. — x • c-/

would cause I to be increased by two. It may also be written by in-

serting "Bx" (increase)" between the max. count and IN as shown in the

third example below or it may be included inside the max. count

parentheses by the form of (max. count/increase) as shown in the fourth

example below. If no increase is specified, it will be used as one.

If the increase is n and n > 1, then the max, count specified must be

m times n in order that the loop be done m times. Thus COUNT (2k/2)...

actually means the loop will be done 12 times (assuming the index started

at zero).

The max. count and the increase may be either absolute decimal

or sexadecimal integers, either explicit integers or the contents, at

run time, of index registers. In order to preserve the symmetry of

these two integer representations, symbolic names of index registers

may be written without the usual preceding comma. Thus COUNT (J/I-1)IN(K),

means to use the contents of index register J as the max. count and to

increase the index register K by one less than the contents of I. If
T J

K starts at zero the loop would be done ^—- times. (If —^ *s no^

24

an exact integer, the result appears to the machine to be rounded up to

the nearest integer; thus, if J = 69 and 1=3 then j/l-1 would cause

the loop to he done 35 times.) Note that arithmetic expressions are not

allowed anywhere in a COUNT statement but that a constant increment

or decrement may be used with any address. Note also that the address

after GOTO (this GOTO may be replaced by any other English word) is

one iu^auxvjn L*V*J jump uu wii^ii ou.c XIIUCA X G£,_L D OCL naa au (^ i caLiicu J. UO

upper limit. This will usually be the location of the beginning of the

loop since the COUNT statement will usually be the last statement in

the loop« The index register being increased is available within the

loop for indexing and the final increased value is available when the

max. count has been reached and control passes to the next statement.

Some examples of COUNT statement are

C0UNT(20)IN(J2)G0T0(B0X 3)1

C0UNT(5)lN(K=K+l)G0T0(L0C 6H
n/-\TT»Tm/»T_i-li \-avf o\-r»T/r> \r"/"\m/~\/ n <-i 1 W

C0UNT(33/3)IN(I6)G0 BACKT0(3. 2)1»

rm,-^- J - J —1 1- I-J 1 J 14- ~J> rt/*MTRTm flJ-AiM-n.4-n 4-"U~ mere IB riu lruiereiiu nets ojuig XJ-UIJ. o ui ouuiu s> ocxuciiiciiuu, 0x1c

only limit of nesting is the number of index registers available (5^ on

BRLESC and about 3000 on ORDVAC). There are no restrictions on trans-

ferring into or out of the loops controlled by COUNT statements.

On BRLESC only, it is possible to omit the "IN (index reg.)"

part of the COUNT statement if the increase amount is a constant number.

Such a statement counts by itself and resets itself to zero when the

limit is reached; however, the loop must not be left by some other state-

ment.

25

6. IF

General Form: IF (ce) AND or OR (ce) AND or OR (ce)

GOTO(Loc)^ vhere ce is any conditional expression that has the form

(AE relation AE relation AE) where AE is any arithmetic ex-

pression and the relation is <><>>>> or =. The general form of "AE)

IS +" is also permitted for any conditional expression.

This statement allows a conditional transfer of control to

another statement. It goes to the location specified after GOTO

whenever the statement is "true". If the statement is "false", control

goes to the next statement. The AND condition always has precedence

over OR and this cannot he changed by using parentheses (this means

that the conditional expressions on both sides of any AND are grouped

together). However, any desired grouping of AND and OR conditions

can be obtained by writing enough IF statements and doing them in the

proper sequence.

Each conditional expression may be preceded by any one or more

of the following names that apply only to the next one conditional

expression:

-NOT ; Negate the meaning of the following conditional

expression. (Negate the relations and change the

implied "and" condition of several relations to an

"or" condition.) However, AND-NOT should not be

used before a conditional expression that contains

more than one relation. (The present FORAST trans-

lators will only negate the relations when this is

U6ed and will not change the implied "and" con-

dition to "or".)

-FLT ; Use floating point arithmetic to check the truth of

the next conditional expression.

26

-FIX ; Use fixed fractional arithmetic to check the truth

of the next conditional expression.

-INT j Use integer arithmetic to check the truth of the

next conditional expression.

-ABS ; This cannot be used when the = relation is involved

in the next conditional expression. For inequality

relations, the absolute values of both arithmetic

expressions are used to check the truth of all

relations in the next conditional expression.

-IF ; Allowed so OR-IF or AND-IF may be written. It is

also true that OR IF and AND IF (with or without the

space) may be written instead of OR and AND.

MODE arithmetic (see page 69) is used to check the truth of

any conditional expression that is not preceded by -FLT -FIX or -INT.

When the relation is =, a tolerance may be specified and the

conditional expression may have the general form of "AE = AE) WITHIN(AE)"

where AE is any arithmetic expression. Only one = relation is allowed

before the WITHIN and the AE after WITHIN is the tolerance. The equality

relation is considered to be true when the absolute value of the difference

of the two quantities is less than or equal to the absolute value of the

tolerance.

The GOTO portion of the IF statement may precede the IF or may

appear after any conditional expression. If the GOTO is at the beginning,

the conditional expressions are tested from left to right in the running

code. If the 00T0 is at the end of the IF statement, the conditional

expressions are tested from right to left.

The following names should not be used as the names of arith-

metic quantities in IF statements: GOTO: OR: AND: IS: WITHIN: ORIF:

27

ANBIF. (Actually these names may be used except immediately following

a right parenthesis.)

(-1 „ T „£> TTT* r-, 4- .-> 4- ^«, ^ „ 4- ,- r-, >,/-, . DUüie CAaZafc) • CB ui _L.r ouaucuiaiuo a.i<=,

IF(Y=I6)OR(X+AL)IS+GOTO(6U.7)

IF(A+B<R**2)AKD(X > Y > O)GOTO(LOC 3)

IF(Q=T-SIN(V/A))WITHIN(.OOI)GOTO(U.I)%

IF-mT(l=3)AlTO-IKT-NOT(j=l)GOTO(D0NE)^

IF-NOT(A=B=C)OR-ABS-NOT(X > = C3(GOT0(,T)#

G0T0(WR0NG)IF(X3-X1 < X3-X4 < =i)5b

In the following two examples, the statements on the same line

are equivalent:

IF(X > Y > I)GOTO(A)$ IF(X > Y)AND(Y > I)GOTO(A)

IF-NOT(X > Y > I)GOTO(A)# IF(X < =Y)OR(Y < =I)GOTO(A)

•~T riTT?A"D

General Form: CLEAR (count) NOS.AT (initial address)^

This statement may be used to clear a group of uniformly spaced

memory cells to zero. (Fl. pt., fixed fraction, and integer zeros

are all identical.) The count is the number of cells to clear (or some

multiple of it if the count increment is not one). The count is written

in an index register and used exactly like the "max. count" in the COUNT

statement. CLEAR(l/3) does not mean to operate on every third location,

as one might expect, it simply means the contents of the desired index

register I happens to be 3 times the number of the number of cells that

are to be cleared.

The initial address is indexable and is the address of the first

cell to be cleared. Consecutive cells are cleared unless a different

amount of address advance is specified by writing it after a / after the

initial address. Counting by more than one may be done by writing

a larger counting increment after a / after the "count". If the counting

OR

and ääcLreSö advancing should uss "ths same incrsnieno, J. w may be written

in parentheses just before $. If any of the count or address advance

increments are symbolic, it uses the contents of that cell and assumes

that the cell is an index register containing an integer number at run

time.

The CLEAR statement always clears at least one cell even if

the count is zero. If three or fewer cells are to be cleared it is

more efficient to write arithmetic formulas instead of a CLEAR state-

ment, e.g. an arithmetic formula of Y — 0 means to clear cell Y.

Some examples of CLEAR statements are:

CLEAR(20)N0S.AT(A)#

CLEAR(l/2)N0S.AT(X2)#

CLEAR (TI+3)WQS. AT (R, J+l/4)*

CLEAR(K-5)NOS.AT(Bl)(5)#

Note that the l/2 count in the second example actually means

to clear 1/2 cells, i.e. the / symbol here actually can be interpreted

as indicating integer division with the nearest larger integer being

used for inexact quotients. In the third example, every fourth cell

is cleared to zero, until (N+3) cells have been cleared or i*-(N+3) cells

have been "passed over."

8. MOVE

General Form: MOVE (count) KOS.FROM (add.) TO (add.)#

This statement may be used to move the contents of a uniformly

spaced group of memory cells to a different group of uniformly spaced

memory cells. The count is exactly the same as was defined for the

CLEAR statement. The initial addresses of each group of cells are

written as shown above and each may be followed by a / and an address

2Q

advance increment that may be either positive or negative or zero. If

it is symbolic, then it is assumed to "be an index register and its

contents are used as the advance. Only one symbolic name is allowed

in each advance increment. Any count or advance increment not specified

will be 1. If the increment for counting and advancing both addresses

should be the same, it may be enclosed in parentheses and inserted just

before %. At least one number is always moved, even if the count is

zero. If three or fewer numbers are to be moved, it is more efficient

to write arithmetic formulas to do the moving, e.g. an arithmetic

formula of A = B# means to move the quantity from B into A.

Normally the initial address of the two groups of cells are

used and positive advance increments are used. However, if the initial

address of the "to" group of cells is the same as any one of the"from"

group of cells, then the moving must be done "backwards" so that all

cells get moved before they are moved into. In such a situation, end

addresses of each group of cells must be specified in the MOVE state-

ment and negative advance increments must also be specified. (See the

last example below.)

Some examples of MOVE statements are:

MOVE(IWONOS.FROM(AI)TO(BI)#

MOVE(N+VMNOS.FRCM(Q+2)TO(Q)#

MOVE(J)NOS.FROM(X,M/3)TO(Y,N)#

M0VE(R-2)N0S.FR0M(C2/0)T0(Vl/K+l)^

MOVE(600)NOS.FROM(B600/-1)TO(B700/-1)

9. ENTER

General Form: ENTER (subroutine name) (add.)....(add.)$

• 30

This statement allows the use of subroutines that do not

conform to the one argument and one result type that are allowed in

arithmetic formulas. (See pages 75-95 f°r the entire list of standard

subroutines that are included in the present FQRAST translators.)

The subroutines allowed in formulas (except ABS) may also be entered

with an ENTER statement. The list of addresses following the subroutine

name are the addresses of the arguments and results and the number and

meaning of these addresses varies with the subroutine being entered.

The subroutine name address is not indexable (ORDVAC restriction) but

most subroutines allow any of the other addresses to be indexed. An

address specified for an argument or a result is usually the memory

location that contains the argument or will contain the result. However

some suurouo-Lnes use some au-uresses ^VmGu are nsGessar.L_i_y integers/ an

being an integer argument. This is done for dimensions of matrices,

number of equations, number of points, etc. where the argument is often

an intorror ^^nstant and hence can be written as an address* If such an

address is variable, then the integer argument must be stored in an

index register and the address written with a comma in front of the

index register name so that the effective address is the desired integer

argument. Small letters are used in the list of subroutines vpsges 75-95)

to denote the addresses that are integer arguments.

Constant numbers may be written instead of the address of an

argument only if preceded by an *. The type of number may be determined

by inserting F,X or I between the * and the number. In the absence

~-P T V ,-.--. T +Via ml•>>oT. T.r4 11 >>Q nnmrar4a/^ 4-/-. +Vlo MCTM? +irr-IO nf nri'+Vl. Ul ±- ,-^., Ul J. , uuc immuci WJ._L.-L. Wt *_ WiA V W A -V.a \,w UUV. -•.-_,x^-_i uj ^_- v>J. U.J. u.V..

metic. (See DEC, page 56 for the rules for writing decimal constants.)

mUrt TIVTnTCD nin-t-nmA^^ -t *7i **./^ + •Vt/ao + l«^ /-»+ Q/^ +• ,-V QTI + OI*'. n fT C! + O TTlf^ Q T^A -LllCT I'll* 1 I'll \ O oa OCJiiCli. O ID 11W Li 1 Co Ul J. «— ^A^u \J\J >^u uui xng u i>«--. J, AVAL* J. •_*.

subroutines, it may be used to enter any sequence of statements or machine

instructions that provide for using the string of addresses and returning

31

to the statement that follows the ENTER statement when the "subroutine"

is finished.

Some examples of ENTER statements are:

ENTER(SINCOS)X)SINX)COSX £

ENTER(SINC0S)(*2.7)SIN 2.7)(C0S 2.j)%

ENTER(ARCTAN)V,I-1)ATV)#

ENTER(MAT.MP)Al)Bl)Cl)3),1+1)6 %

ENTER(PRINT BLANK)#

10. READ and PRINT or PUNCH

General Forms:

READ(add.)(*dd.) $

READ(count)N0S.AT(add./increment)#

PRINT-F0RMAT(format add./subgroup)-(add.)...(add.)#

PRINT(add)...<string of characters > #

The READ statement allows decimal numbers to be read from cards

(or tape on BRLESC) and the PRINT (or PUNCH) statement allows decimal

numbers and/or alphanumeric characters to be punched on cards (or, on

BRLESC, to be put on tape). There is no difference between PRINT and

PUNCH, the type of BRLESC output depends upon the setting of a console

switch and the use of SET.TO as a statement or subroutine.

The addresses of the quantities to be read or printed may be

specified as either a list of single addresses or by stating the total

number of numbers (count), the initial address, and the address increment

if it is other than one. The "count" must always be separated from the

address by the use of "NOS.AT" and the "count" is always the total

number of numbers actually read or printed (or punched) regardless of

3^

vraetner tne address incremenx is one or not.. Tne count ana aaaress

increment are Integer numbers and a symbolic address will be used as

an index register whether a comma precedes it or not.

The entire list of quantities involved in any one READ or PRINT

or PUNCH statement may be any combination of single addresses and

"NOS.AT" clauses. PRINT or PUNCH statements may also contain a string

of alphanumeric characters that will he punched in addition to any

numbers that are punched. The character < must precede the string and

the character > ends the string. Any character except > may be used

in a string and blank characters within a string are not ignored. A

string of characters cannot be continued (by using CONT, see page 52)

from one program card onto another. If a string is too long for one

card, it must be written as two or more shorter strings with each one

completely contained on a card. A string of all blank characters may be

indicated by just writing "n >" where n is a decimal or sexadecimal

number of blank columns to be inserted in the output. The n must be

preceded by "(" if it appears first in the PRINT or PUNCH statement.

For example: PRINT (7 >(A)21 >B?o would skip 7 columns, print the

iiuiuuci L:O.J_J_CU. t\y cxvxp ^J_ LUJ.LUU11D a,nu.' _[J± -Lii u one iiuiuucL uancu u.

The type and length of decimal numbers read or punched is controlled

by a format word. If no format is specified, then a standard format that

allows six numbers of twelve columns each on each card is used. The

input numbers may be either floating decimal with an exponent or with

a decimal point punched (or both) and are stored as floating point numbers.

(See FOEM, T = 10 page 63). The standard output format assumes floating

point or integer numbers and will print six numbers of twelve columns

each. The floating point numbers will have exponents and an assumed

^nub puiicneu; aecxuitu. puxnu uu bxie J_<SJ. L UI one uuei ncieni,. ^see runtn,

T = 9 page 63)• (The standard floating point format for each number is

sign and eight digit coefficient with sign and two digit exponent.)

A non-standard format may be specified in any READ or PRINT

(or PUNCH) statement as illustrated in the third general form above. To

33

specify a format, PRINT (or READ or PUNCH) must be followed by a dash

(minus si*•) and the next name enclosed in parentheses is the name of

the first format word to be used. It is suggested that the word FORMAT

be written between the dash and format name. The format address may be

followed by a / and a subgroup integer number. The subgroup is the

number of numbers that are to be punched or read on one card v°r °ne

group of cards). Whenever the subgroup number of numbers has been

read or punched, a new card is started and the format is started from

the beginning. A zero or omitted subgroup means that there isn't any

subgroup. The format address and the subgroup are not indexable

(ORDVAC restriction). (See FORM, page 59 for information on storing

•f*^% »Mat wny<^ ^ 1

The name "NOS.AT" must not be used as the name of a number

-a Ä.
U. U;

parenthesis.

The standard minus sign useu. on inpuo an«-i output numbers is

the y(or 12) punch. For input, any number that is not negative Is

positive and the standard output plus sign is a blank column. However

J-1 J — £> 4-T «4 _«. -^«^V^r* MA» "W« r,Vmr>^^A "WT ,ir^-l-^»~ 4-V^a CL'M'lJfCJT
Ollt: UietLIlJ-Il^ UJ. UI1C £>_L£I1 ^UliCUCD UUXJ L/C U11CX11£,CVJ. UJ UDi.115 OllC UUU'JWl ^

SETMSO, and SETPSO subroutines in an ENTER statement. (See page 78).

Signs normally occupy a column by themselves and are said to be "single

TMin^oil " TInuoiror -t-Vio-w mov Vio "rfniiVilo •nunr>Vif»H" IrninnVipd qhnvp t.hp

leading digit of the number by using SETDPI (for input) or SETDPO

(for output) in an ENTER statement. (See page 78). Note that double

punched siCTns cannot be printed oni the hi-ST>eed T>rinter, it would print

some letter instead of a sign and a digit.

A blank card is used as a standard sentinel card for READ

statements and reading will stop whenever a completely blank card is

54

read except when the "blank card is the first card read by a READ state-

ment. Thus a READ statement may be written to read a large amount of

data and the actual amount of data stored may be controlled by insert-

ing a blank card at the end of the data. (The maximum amount of numbers

that may be specified is 16383 but ÖRDVAC uses the amount modulo k096.)

If it is desired that a READ statement should read no data, it is

necessary to insert two blank cards because the first card is ignored

if it is blank. The letter S (or the word STOP) punched in place of

a number on an input card also stops the READ statement from reading in

the same manner as a blank card does. (The S must not be punched in

the sign column for ORDVAC.) If a field is punched with the letter X

in any column except the sign column, no number is stored from this field.

The next number will store in the same place the previous field would

have stored. An "X field" will be counted in the subgroup count (if

there is one) but not in the total number of numbers that is left in

index 9 and the next format type is used for the next field. Note that

an "X field" is a way of removing a number from the middle of a group of

numbers without repunching them. It is not a way of not storing a number

in an address specified in the READ statement.

Every READ or PRINT or PUNCH statement begins a new card. A

new card is started within a statement only when the format or subgroup

indicates that a new card should be started.

After a READ statement, the number of cards vnot counting blank

cards) read by that statement is always left in index 8 and the number

of numbers stored is left in index 9 as integer numbers.

The strings of alphanumeric characters allowed in PRINT or

PUNCH statements are entirely extra and are inserted on the card wherever

they occur in the statement. If the string occurs at the same place a

format word indicates a skip, start new card, etc., the string will "be

punched "before the format action occurs.

35

The format does not need to include anything extra to print the alphanu-

meric characters nor is any part of the format word used or skipped while the

string of characters is being printed. A number printed after a string

of characters begins in whatever column follows the string on the card.

The symbols < and> may be used without parentheses between

them and the addresses of a number. As usual, the left parenthesis

preceding an address is optional after a right parenthesis or after ^> .

The dash viüiftus sign; must always be used both before and after a FORMAT

specification.

Some examples of READ and PRINT or PUNCH statements are:

KEAD(X)(Y)(Z,H READf2UN0S = ATfAlH \ / /-

REÄD-F0RMÄT(F^)-(S)(T)(l6)N0S.AT(Bl,l)£

READ(U)(V)IONOS.AT(X/2)(A)B)J+2)NOS.AT(RI/I-I)#

FRINT(X)(Y)(Z)0 PRINT < X IS TOO BIG> (X)4

PRINT-F0RMAT(QT/5)-(K)N0S.AT(A1)(0KS)N0S.AT(M1,1)^

PUNCH < X =>(X) <Y =>(Y) <Z =>Z<t>

PUWCH(1| > < HEADING > 6 > < RANGE > 5 > < HEIGHT > $

11. HALT
General Form: HALT (Display address)$

This statement causes uis compuoer oo stop runnxng. ±us

address is optional, but if it is used, it will be displayed in the halt

order. (it will be in the first address of a BRLESC halt order.) If

the computer is re-initiated, it will continue with the next instruction

or statement. If a problem is done running or can not run further for

some reason, a GOTO (N. PROB)$> statement should he used instead of a HALT

statement.

Examples: HALT $ HALT(3) # HALT(ONO)#

VII. PROGRAM CARD FORMAT

FQRAST program cards are divided into four fields as follows:

Columns Use

l - 6 Location field.

7-10 Order Type field.

11 - 76 Formula and Statement field.

77 - 80 Identification.

The location field (cols. 1-6) may be used to assign a name

to the first statement or constant that appears on the card. (See VIII

page38).

The order type field (cols. 7 - 10) is used for the "pseudo

order types" that provide translation information and may be used for

the order type of assembly orders. The order type field determines how

the rest of the card is interpreted and is to be left blank when the card

contains arithmetic formulas and/or English word statements.

The formula and statement field (cols. 11 - 76) is primarily

used for arithmetic formulas and English word statements. It may also

be used for assembly orders, numbers, translation information, comments,

etc. The meaning of this field is controlled by the order type field.

If this formula and statement field is not long enough, it may be con-

tinued onto the next card by using CONT in the order type field of the

next card. (See CONT page 52). This field may be terminated before

column 76 on any card by using "$$". (in some of the pseudo order types,

only one $ is required to terminate it.) Comments may be inserted after

37

such a termination. The # after the last formula (or statement, etc.)

on a card may be omitted.

The identification field (cols. 77 - 80) is never used as part

of a program. Anything desired may be punched into these four columns.

To simplify the key punching of FORAST programs, it is recommended that

these four columns be used only for a decimal numbering of the program

cards. (This numbering may be reproduced rather than key punched on the

cards and need not "be written by the programmer.) Error prints obtained

during translation of a problem will also print the identification field

of the card that contained the error. (See section XI).

VIII. USE OF LOCATION FIELD

The location field (cols. 1-6) may be used to give a symbolic

name to the first instruction or the first number that is coded from a

card or it may be used to specify an absolute storage address for the

orders and/or numbers that appear on the card and on the following cards.

The location field is ignored when it is blank. It is also

ignored when it has the same name (symbolic or absolute) as the last pre-

ceding non-blank location field. This allows extra cards to be inserted

in front of a card that has a location name and the location name

designates the first of the cards that have the same location name; this

facilitates insertion of a temporary PRINT statement for checking. If

some other location name is used between the two locations that have the

same name, then the code generated at the second location will be stored

over the code generated at the first location and will destroy it.

The location field controls an absolute machine address which

shall be referred to as the "location counter." This address normally

36

starts at 0100 (sexadecimal,01040 for BRLESC) and is advanced by one for each

machine word that is generated by the'FORAST translator from the FORAST

program. If any decimal or sexadecimal absolute address appears in the

location field, then the location counter is set to that address. If this

is done, the old location counter address is not remembered by the trans-

lator and all following generated code will be stored consecutively

from the new address until a location field is encountered that will

cause the storing to begin elsewhere. Thus changing the location counter

may control the storage of many following cards, not just the card on

which the new location appears. If a symbolic address that has not yet

been assigned appears in a location field, it immediately becomes assigned

to the address that is in the location counter at that time. Thus the

assignment of machine addresses to all names that appear in the location

field is done as soon as these names are encountered. If a symbolic

address that has previously been assigned (by being a previous location

or in a SYN or BLOC statement) appears in a location field, then the

location counter is set to the address that was previously assigned to

Special rules apply to names in location fields that are within

a previously defined "BLOC", (See BLOC page 44.) If an unassigned block

address is used in a location field, then the initial name of the block

is assigned to the current value of the location counter and the location

counter is then advanced to the actual address within the block that was

used in the location field. For example, if XI - X4 was defined as an

unassigned block and the location counter was currently at 0142 and then

if XJ was used as a location, XI would be assigned 0142 and the location

counter would be advanced to OlU, which is the address of *5, and the

next generated code or number would be stored in XJ. Thus space is

allocated for a block up to the block name used but not beyond it. If

39

space should be left for the entire block, then the name of the last

cell In the block must be used in the location field. If a location

block address has previously been assigned, the location counter is

set to the actual assigned address within the block.

Increments may be used on symbolic location addresses. If

the symbolic address has been assigned, then the location counter is

set to that address plus or minus the increment. Thus A + 2 would

set the location counter to 0202 if A was previously assigned to 0200.

If the symbolic address has not been assigned, then it is assigned to

the location counter first and then the increment is added to or sub-

tracted from the location counter. Thus a positive increment on an

unassigned address causes the location counter to skip ahead and a

negative increment causes it to be set back and probably causes some

previously generated code to be destroyed.

SELF is a symbolic name that may be used to refer to the

location counter. It cannot be used for any other purpose. If SELF

is used in any instruction or statement, it is temporarily assigned to

the current location counter address, (in assembly orders, it is the

location of the order that it is used in.)

Since ORDVAC is a. single address computer with two orders per

word, it is necessary to have some special location field rules so that

the programmer will have some control over the storage of left and right

orders. Since BRLESC is a three address computer with one order per word,

the special rules in this paragraph do not apply to BRLESC. If a location

field on ORDVAC contains either an absolute machine address or an un-

assigned symbolic address that does not begin.with the letter R or a

decimal digit, then the next order coded will be a left order. If an

ko

unassigned symbolic location address begins with R. then the next order

coded will be on the right side. If the symbolic location address begins

with a decimal digit, the next order vill follow the previous order and

hence may be either left or right. Thus orders that should be coded on

uiic ICH siue UJ. a wuru SSIIUU-LU. ue given a xucaonjn onao uegius wiun a

letter other than R and orders that should be coded on the right side

should have locations that begin with R. If the next order may be coded

r*n o-l +Vior e-IHo +VIäTI ^+ ^ e "Kac+ f"kn+- *-i/*\-f- nc*r*a a a o -mr i 4-*-» iio*=i o 1nno+^n Uli _ _L. UU^l W -l.V>.<_ j UilV, 11 -L. \J M U U<-IJ U _ W Li U 11V^ U U'w ^^.DDO/l V y uw t-iöt CA. _i_ W^CA u±un

name that begins with a decimal digit. The ORDVAC FORAST translator

codes a ZX (SELF + l) conditional stop order whenever it inserts a

dummy order so that the next order will be on the T>roT>er side« These

special location field rules apply only when ORDVAC is generating orders,

not when constants and full words are being stored by DEC, SEXA, etc.

pseudo order types. These full word constants always occupy a full word

and the location counter will be advanced by a half word if necessary

before storing a constant. The ORDVAC dictionary listing prints L's

and R's to indicate left and right location names. SELF is used as a

left location regardless of which side the location counter is currently

on.

On ERLESC symbolic index names must not ST^esr in a location

field unless they have been previously assigned or used as an index register,

(index register names get assigned on ERLESC as soon as they are used as an

index register.) If an assigned index register name is used in the location

field, the location counter is set to the assigned address.

It is not necessarv for all symbolic addresses to atvDear in a

location 1 leia. 'ine LrnilBJ-aLurs a.uoumeiuj.ca.xxjr aBbiyi »i/uiajc DJIOCC IUX

all symbolic names that remain unassigned when the END of the program is

reached. This assignment of all of the rest of the unassigned name6 begins

•trA 4-Vk +V.« nAA -••rt sCl -*"^Q"*~ "* C* Am +V\ö 1 A«Q+4 f*»-! r* CM ln + öT» O -P+^ir» +V^c* TntfTl no 'v*r\ (Q.e\c\ Yt 1. Uli UU.C GkUAJ_L COO UJLiCX O _L O _L 11 I_.J.J.<^ J.W _a. uiuu v^vjuu uv,i ai. O^A unv, um/ V-CAJ. k.t. ^ i_<^ v_

END page 68) is processed, hence the location counter must be left at some

address that has enough space after it.for assignment to all of the un-

' kl

assigned names. This automatic assignment of addresses is done so that

all names have unique storage except for those names that appear within

SYN statements (See SYN page kÜ). Enough storage space is always left

for all blocks and when SYN is used to make a name in a smaller block

(or a non-block name) the same as one in a larger block, the larger

block is assigned first so that the smaller block will fall within the

larger block. If neither of such blocks is completely contained within

the other, enough space is left to provide storage for all of both blocks.

This machine assigning is done in the sequence the names appear in the
J-i ~x-i ~<~«—- Ä««Ä,-x -P„_ xvA «*.«*«*. xi«nx «^^«„». 4« tyina ~— TAem ^„«,,^« n-»^n-» UXU OXUIKXXy CAUCJJO 1UI OilC UCUilCD U11CLO aiJyCClX XII UX11 UI ilftül L^DC UU.U uxixcx

types. (BRLESC will assign some and possibly all of the single variable

names between the constant pool and the subroutines). Hence if certain

names or blocks must be assigned in a definite sequence in the memory, the

programmer should use these names in location fields or on a "LOG" card

(See LOC page 1+9) to insure that they are assigned to the proper sequence

of memory positions.

IX. Pseudo Order Types

The order type field (cols. 7 - 10) may be used for any of the

pseudo order types that are defined below. There are two major types of

pseudo order types; (l) there are those that do nothing but allow the

Tvrr><?-rammer to control to some extent the translation of his program and
z—0 - —

(2) there are those that allow constant information to be stored as part

of a FORAST program. On every card, the order type determines the type

of information the translator expects to find in the formula and state-

mpr+ fMP"M (cols, n - 761. TVy» list, of nermitted useudo order types is:

(l): PROB: BLOC: SYN: LOC: LAST: CONT: LIST: END: DATE: COMM: MODE: STOP:

NOS.: FTTS: ASGN: SUBR: O.T. (2): DEC: DEC=: FORM: SEXA: ALFN

A. PROB

A PROBlem card should be put at the beginning of every

FORAST program to identify the program. It should contain the problem

number, the programmer's name (or at least initials), the approximate

date it was "ro^-rammed and a brief title or description of the problem.

1+2

ised "by the ORDVAC FOPAST translator except that.

it is printed out ahead of the dictionary and/or the problem output to

identify these outputs.

For BRTiF.FSC, a PROB identification card is mandatory and a proper

problem number must he recorded on the PROB card after "PROB". A

program that does not have a PROB card before the first formula (or

the END card) viii not be compiled or run.

The problem number, to which the computer time is to be charged-

should be the first thing after column 10 and must not extend beyond

column 20. If other characters follow it before column 21, there must

be one of the following characters at the end of the problem number:

blank - + () $ or comma. If any of these characters are inserted

before or between the first three characters of the problem number,

they will be ignored.

If more than one PROB card is used in one program, the first one is

the one that will actually be used. The others will be ignored. (Any

PROB cards that have cols. 11-20 blank will be ignored.)

The reason for mandatory PROB cards is that the BRLESC FORAST

compiler and N. PROB subroutine make use of the real time clock to keep

a record of the computer time that is required to run each problem. This

record consists of punching the PROB card at the beginning of the problem

with cols. 61-7C replaced with the date and cols. 71-80 replaced with

the "start time". At the end of the problem, another card is punched

that contains the problem number in cols. 1-6, the "charge time" in

cols. 7-10 as hrs= and mins,. the total time, the compile time, the

date, and the "stop time" in cols. 71-80. These two cards for each

problem will be punched into a special hopper on the card punch unit

and thus will not appear wi h the normal outputs.

When the C. PROB subroutine is used to compile several programs

consecutively, the BRLESC time will normally be charged to the problem

number that is on the PROB card in the last program. However, all of

1+3

the PROB cards should have the same problem number and the PROB card of

the first program is the only one that will be punched for the time-

keeping record with the start time on it. The compile time will be only

for the first program compiled.

If you have a legitimate reason :'or not being charged for running

your problem, a card having "NO CHARGE" in the cols. 11-76 field may

be inserted to cause the BRLESC charge time to be zero.

The location field of a PROB card is always used. A PROB card that

is blank in columns 11-20 is ignored except the location field is still

used. Example: PROB 61+7.1 J.Q. BROWN JULY I961 AIR FLOW

B. BLOC

This is used to define the names and sizes of one or two dimensional

blocks of storage. Two dimensional blocks of storage will be referred

to as arrays.

One dimensional (linear) blocks are defined by writing the symbolic

names of the block followed immediately by the initial decimal integer

"subscript". (The word subscript will be used here to refer to the

decimal digits, however the subscript is written on the same line as

all of the other characters in the name.) Thus Al could be the name

of the initial cell of a block. A dash (minus sign) is used to separate

the initial block address from the final block address. The final block

address must have the same letters as the initial address but they are

followed by the final decimal subscript. Thus Al - A10 would be the

definition of a linear block of ten memory positions and each position

in the block may be referred to in the rest of the program by using the

names Al; A2; A3; Ak; A10. Note that A and A12 are not names that

are a part of this block and may be assigned memory positions that are

quite different than those assigned to the block A1-A10. The initial

subscript may be blank or zero or any positive decimal integer and the

final subscript would normally be larger than the initial subscript.

hk

(Only BRLESC allows the final subscript to be smaller in which case

the smaller subscripts are assigned to larger addresses than the

larger subscripts.) If the initial subscript is blank (omitted), it

is used as zero but has the additional effect of allowing the initial

cell of the block to be referenced by no subscript or a zero subscript.

Hence if B - B6 is defined as a block, the initial cell may be called

either B or BO.

The complete block name, including the largest subscript,

must not be more than six characters on ORDVAC. On BRLESC, a total of

eight characters is allowed with the following restrictions; if the

block name is three or less characters, the subscript may be any 5

digits, for four letter block names, the subscript must not be larger

than 4095 and for five letter names, the subscript must not be larger

UlicXli UJ .

The names within a linear block will be assigned to con-

secutive memory positions unless the block definition is followed by

a / symbol and a decimal, or sexadecimal or a previously assigned

symbolic name (that may have an increment) that determines the spacing

between each element in the linear block. Hence TO - T20/2 may be used

to specify a linear block of 21 memory positions that uses every other

position, i.e. if TO is 0200, then Tl is 0202, T2 is 020*4-, etc. If a

symbolic name is used to indicate the spacing, its previously assigned

address (not its contents at run time) is used, i.e. the bloc spacing

is fixed at compile time. (A SYN statement would normally be used to

assign a symbolic name for this purpose.) Non-consecutive spacing is

allowed on linear blocks so that several of them may be "interwoven"

by using a LOC pseudo order type. (See LOG page kQ) .

A linear block definition may be preceded by "absolute

address /" or "i/". The absolute address will be assigned to the

initial name of the block and the "I" will cause the block to be

assigned to index registers. (The "i/" is only necessary when the

block must be assigned to index register memory. Thus the full

general form of a block definition is:

h5

(I or mach. add./initial name - final name/spacing)

Some examples of linear block definitions would be:

•DT fv-i /-m ino\/» A)iOA\uAtn c liArr or^rm rn£n /T \

BL0C(I/I1-I4)0600/3R-3R199)

Two dimensional blocks (arrays) may be defined and referenced

by writing a symbolic name and a row subscript followed by a comma and a

column subscript. Ml,l - Kk,k would define an array that has four rows

and four columns and requires sixteen consecutive memory positions. All

arrays must use consecutive memory positions and are stored by rows, i.e.

the names of consecutive positions of Ml, 1-M^,1| would be Ml,l: Ml,2:

Ml,3: Ml,k: M2,l: etc. The initial and final row subscripts can be zero

or any positive decimal integer. \,The initial column subscript must be

less than 6k and the final column subscript must be less than 256 plus

the initial column subscript.) Arrays may be square or rectangular and

may also be defined as triangular by following an array definition with

"/SI." (symmetric) or "/LSY." (lower symmetric). The upper triangle is

stored when SY. is used and the lower triangle is stored when LSY is used.

For SY. arrays, the column subscript must be greater or equal to the row

subscript and for LSY. arrays, the row subscript must be greater or equal

to the column subscript. SY. arrays may have more columns than rows (may

be augmented) but LSY, arrays cannot have more columns than rows.

The symbolic letter positions of array names should not have

more than four letters (small arrays of less than 6k memory positions may

generally have five letters) and the letters should be different than the

letters used for any linear blocks. (FORAST translators handle array

addresses by "linearizing" them and linear block names must therefore be

different than any array address that has been "linearized." Thus M15

is the same as M4,3 in the array Ml,l-M4,4 and must not be a part of any

k6

linear "block.) Arrays cannot be assigned to index register storage.

Some examples of array definitions are:

BLOC(Rl,1-Rk,6)(O8OO/ATI,1-AT10,5)

BLOC(BQ1,1-BQ10,ll/SY.)MAT-MAT5,5/LSY.)

Array addresses may be indexed by using a second comma

after the array name followed by an index register name. Thus R1,1,I

illustrates the method of indexing Rl,l by I. If the index register

address used to index an array address is decimal or sexadecimal, it

must be enclosed in parentheses. Hence Rl,l,(lO) is the way Rl,l can

be indexed by index register ten. (Note that Rl.l would be Rl indexed

by index register one if Rl,l was not defined as part of an array.)

Indexing in FORAST should not be thought of as variable subscripts, it

is simply the addition of a variable integer to a primary address that

determines the actual address used at run time. This means that Al is

not necessarily the same as A,I when I contains a one, they are the

same only if the initial cell of the block is called A. If the initial

cell is called Al and it is desired to reference A1,A2, etc., then it

should be written A1,I where I assumes consecutive integer values start-

ing at zero. This emphasizes the fact that the subscripts used with

the letters of a block or array name must "fall within" the block or

array before the name is a member of the block or array.

A block or array definition (BLOC card) must precede any

reference to members of that block or array. It is wise to define all

blocks and arrays before writing any other symbolic addresses.

Columns 11 - 'Jo of a BLOC card may be used to define one

or more blocks or arrays. Successive definitions should be separated

by a right parenthesis (a left one is optional) and a "$" may be used

after the last one to ignore the rest of the card. The location field

should not be used.

ü. SIN

This may be used to assign absolute addresses to symbolic

names or to allow different symbolic names to be assigned to the same

memory space. For some problems, the memory may not be large enough

to allow a unique position for each and every number, thus it may be

necessary (to avoid using drums or tapes) to use the same memory

position for more than one number when such numbers are not needed at

the same time. A and Q normally would be assigned to two different

memory cells but if A is computed and completely used before Q is

computed, then it would be all right to store Q in the cell that pre-

viously contained A. A SYN statement of (A=Q) would cause the symbolic

nampK A and ^ to ^^ ass-' crried to t*?° same siomr»*Tr ^»oi i

Each synonym definition is of the form:

(Add. = Add. = = Add.)

where Add. may be any type of address allowed ^absolute or symbolic;

but increments cannot be used in a SYN statement. Addresses within

blocks or arrays may be used. The same effect as increments can be

SYN statements to obtain the desired storage arrangement. However the

LOC pseudo order type is usually sufficient for this purpose. (See LOC

•nn ere* 4 Q 1 .
i~-e>~ " •• i •

SYN cannot be used to reassign any address that has been

Teviousl"' assi°ned. ^See ASGN m^e 73)= There must not be more than

one address in each synonym definition that is an absolute address or

has been previously assigned. As soon as any one name within one

synonym definition becomes assigned, then the other names are assigned

accordingly.

h&

The addresses in SYN definitions are always assigned

properly (no unexpected overlapping of storage) if the machine assigns

the first address in that definition after the END card. However, if

the programmer causes one address in a definition to be assigned by

using it in a location field (or another SYN statement, etc.), then

the other addresses are assigned accordingly without any checks for

i-nr«-»0 «a -rty^ *r\ rr e+" '"'"»•Q *"*ö TJVv«»-! +V»ä MOrtVi-lMö a et es A rm a o viamÄ + V»a 4- A es ^ vnrrtl vreiA uvci xap_pj.ii(j, o oui a(^c • nucn one iiinuunxc aooiguo a, iiainc KjU.a u j_ o invwiycu

in a synonym definition, it allows enough space for all of the blocks

or arrays that are assigned because of the synonym definition and

smaller blocks or single names are always assigned within the larger

blocks.

Each synonym definition should be separated from the next

one by a right parenthesis though a leading left parenthesis is optional.

A "fL" after a definition causes the rest of the card to be ignored.

Some examples of some SYN definitions are:

C!VWf A-Tl-n^R-OO^Vn li-nElT.TAV d.

SYN(G1V=E10=F1=T)(T=T1=Q)

The ORDVAC FORAST translator has a limit of 6k (55 if the

computed GOTO statement is used) unassigned symbolic names that are

used in SYN definitions. Thus an ORDVAC program must not use more than

6h (or 55) names in SYN definitions until some of them are assigned.

BRLESC allows 288 unassigned SYN names.

D. LOC

A LOC card allows man-"- 'locations" to be specified on ons

card. The location field is first processed in the normal way and then

the addresses in cols. 11-76 are also processed as "location fields".

(See VIII paKe 38).

^9

A LOG card allows a programmer to cause a list of symbolic

names to be assigned in a desired sequence. Successive names will

normally be assigned to consecutive memorv 'Dositlons althoueh block

or array names, increments, ana previousxy assignea aaaresses may cause

non-consecutive assignment. Note that space for the symbolic names is

allowed where the LOC card appears in the program and the location

counter is advanced by one beyond the last space assigned on that LOC

card.

VI1C VJi. UUC yi'XUiO,i:y UDCö ul CX jjvyv> uaiu J. D O^ U.C±±UC \JLI*Z

desired sequence of "interwoven blocks". To cause (X-X20/3)(Y-Y20/3)

and (Z-Z20/3) to be interwoven blocks (a spacing of 3 must be specified

in a BLOC statement), (X)(Y)(Z20) must be specified in a LOC statement.

Note that the first name of a block is used for all blocks in an inter-

woven string of blocks except the name of the last cell in the last

block is used. The example above causes X to be assigned to the

location counter, the location counter is advanced by one and ± is

assigned. The location counter is again advanced by one, as it is

after every address on a LOC card, and the Z block is assigned beginning

at the current address in the location counter. Then since Z20 was

written instead of Z, the location counter is advanced to Z20 and again

advanced by one before assigning or storing anything else. Hence the

use of Z20 allows space for all the Z's which includes space for all

the other X's and Y's. The sequence of these block names in the memory

would be X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3, ,X20,Y20,Z20.

Only one address may be written in the normal location field.

Each address in cols. 11 - 76 must be followed by a right parenthesis with

an optional leading left parenthesis. A % after the la6t one will cause

the rest of the card to be ignored. Increments are allowed. A blank

^C

location field, or more than one right parenthesis "between names

causes the location counter to be advanced by one. Thus (A)))B would

cause two blank locations to be left between A and B.

Some examples of LOG cards are:

f JJUI; i,VIMVC:;9ää; %

X10 L0C(Y10)Z10 #

This last example causes the blocks (Xl-X10)(Y1-Y10)

(,Z1-Z10^ to be stored consecutively providing none

has been previously assigned. The same effect using

the "false block" technique is achieved by defining
_ ".*»— -i » TiTivi/m TU^IN 4-v__ pw/m_vi \/ni_vn ^/•ool_7^ ^ a IOXBC Diwo^i-rju; oucn aim, JX=AJ-; \c J.J.—XA. / \x CJ.=^JJ. y

E, LAST

This pseudo order type may be used to tell the translator

that a Pert&in block (rvr sevprnl yilrinlrR +.Via1". nrp 1 ntpninvpn I nr nnp

— — • - - ^» array snouia De assignea arxer an oxner storage nas oeen assigned, it

allows a programmer to reserve the "rest of the memory" for some data

that is of indefinite length. Thus a programmer may allow as much

space as possible for a specific purpose without knowing ahead of time

just how much space is available.

^•L -._n J v~ ä ä « -* -3 n -. . xne name or names tnat snouia De assigned xast are i>o oe

written in cols. 11 - 76 and separated by a right parenthesis. There

can be onlv one arrav name or there can be several block names if they

have non-consecutive spacing yinterweavingj in wie ±JJJ\J^ UCHUIUIOU.

There can also be a list of names or just one name that is indexed in

the running program to access or store the rest of the data. If a block

or array name is used, any name within the block or array may be used.

P-L

If more than one "block name is used, the first elements of each block

names are assigned to consecutive positions regardless of the subscript

used, (it is not necessary to use the last subscript of the last block

named.) Since a LAST card essentially assigns a "block of storage",

the name(s) need not also be defined on a BLOC card unless the program

explicitly uses the names of elements in the block other than the name

of the first element. BLOC definitions must always have a numerical

maximum subscript, but for those block names that are used on a LAST

card, the BLOC definition need only include the largest subscript

actually used anywhere in the program.

If several names are written on a LAST card, they are

assigned to consecutive positions in the same seauence they are written.

If other names have been defined as synonyms (SYN) of LAST names, then

they are not assigned until the LAST names are assigned.

There is a restriction of a maximun of 63 names on a

LAST card. (BRLESC allows 111 names.)

The location field should not be used and a $ after the

last name causes the rest of the card to be ignored.

Some examples of LAST cards are:

LAST Al,l £

LAST (Xl)Yl)Zl)

F. CONT

This pseudo order type should be used when it is necessary

to continue from one card onto the next card. Columns 11 - 76 of a CONT

card continue from column J6 of the preceding card. The translator

assumes a $ character after column 76 of each card except when the next

card is a CONT card. It may be used after any card that uses columns

11 - 76 except that it cannot be used to continue a "string of characters"

in a PRINT or PUNCH statement.

started on one card and completed on the next card. A CONT card is

ignored if column 76 of the previous card was ignored, thus comments

mpv "ho r»r\r»+/1 «marl oler\

The location field should not be used. There is no limit

G. LIST

A LIST card may be used to tell the translator to print

a "dictionary" that shows the assignment of all symbolic addresses for

the program that is being translated. The dictionary is not printed

unless a LIST card is inserted somewhere in the program (or the trans-

lator finds an error in the program).

A sexadecimal listing lof the code may also be obtained

by writing "S. CODE" in columns ll->76 and a binary card program

A e "V -mcnr \>a cVK-f-Q -T T»I^/-? Vnr T.rvn f n nrr "R OfYTSTf! *i r"> <-»/"0 nmno "I "I =7A C\-r\ VO.C \^i\. lilt* V 1^ v_ _< i_/ ut* J.II^U kJ V *» J. J_ uiiig J-< • WJJJJ Xii V. *—'.i. mm 10 ..i-..L. — 1 W « v-*!!

BKLESC, if a program is written for use as a subroutine (with key words,

relative addresses, etc.), "B.SUBR" may be used to obtain a binary

deck suitable for use as a standard relocatable subroutine, "NO DICT"

is also allowed in case a dictionary is not desired when obtaining a

sexadecimal or binary print of the program. All other names on LIST

cards are ignored. If more than one type of listing is desired, the

names may be on the same LIST card separated by a right parenthesis or

they may be on separate LIST cards. A "B.CÜDE" print is not done if a

"B.SUBR" print is done for the same program.

Each line of an "S.CODE" listing from BRLESC consists of

a location address followed by four words that are stored beginning

at that address. It is a "memory dump" type of print that shows the

program as it is stored in memory. It includes index registers 008-03F

H'l

and from 080 to the beginning of the subroutines. Any line that would

only show four zero words is not printed.

A B.CODE print is a memory dump onto binary cards and it

includes the subroutines used by a program except for the decimal input-

output routine. To use this deck to run a. program, a program input

routine must be placed in front of it and the decimal in-out routine

must be placed behind it. The last card of this program deck must be

a key word that jumps to 073- Since the BRLESC translator is extremely

fast, the use of binary decks is unnecessary. (For some problems, it

will take longer to read the binary deck than it would take to read and

translate the symbolic deck.) A B.CODE print includes 00K-03F; 058-06L;

07J-07L; 0S0-S9L and 01040-end of memory except for the next to last group

of ^096 cells. (Zero words are not punched.)

On BRLESC, a B.CODE or B.SUBR print is done between the

dictionary print and the S-CODE printing. The binary cards will always

have a y punch in column 80 and will be separated from the other cards

by a blank card.

On the ORDVAC, sexadecimal print is a memory dump of 0^0 to

the beginning of the subroutines and prints eight words per card with a

"range card" at the beginning of each group of cards. The range card

specifies the first and last locations of the following group and no

group exceeds 256 words. Cards that would show only eight zeros are

not printed when there is more than one such card in succession. These

sexadecimal cards should be listed on the 1^+01 to get extra spacing.

The ORDVAC binary print is a memory dump of 000-009; 040-J7L

and 0LN1-0LNJ. To use this deck, it must be preceded by a program

input routine (5 key Input Routine) and the decimal input-output routine

must be inserted in front of the last binary card. (The next to last

card of the binary deck ends with a 0JJ0 store key word and the last

card ends with a key word that jumps to 009•)

^

When the dictionary is listed on either computer- four

symbolic addresses are listed on each line and the dictionary is in

alphabetical order by columns. (The numerical value of the six bits

used to represent each character determines the alphabetical order-

hence the characters zero and prime are between E and 3 and a decimal

point is between I and J.) Each symbolic name is followed by its sexa-

decimal assigned address and this may be followed by any of the follow-

-iv-ii-i" I r\ •+- -i- r\ -v»<-» •
Xllg J-C O OCX O «

L - Location name. (Left location on ORDVAC)

"D "D-r «.v.4- T^rt^-*--r^-v« ~« rvDnrrA n
X\ — J.\-L£,.LI. U XUUa O-LUU KJll UiWV-flU •

B - Block name. (Both initial and end names appear in the

dictionary, the assigned address printed with the end

nHHr-oco n a +Vio cr»Q r* -? n cr i.n' +Vi i YI +VIO hlnr-V 1

A - Array name. (The linear equivalent of both the initial

and end names of an array appear in the dictionary. The

assigned address printed with the end address contains

the length of a row as the last two sexadecimais and is

preceded by the initial column subscript.)

S - Appeared in a SYN statement.

M - Machine assigned address.

I - Index Register name. (BRLESC only)

F - Function or Subroutine name.

U - Unused name. (This means that the name appeared only

once in the program and may indicate a programming or

key punching error. It does not keep the program from

being run.) A dictionary may be listed on the hi-speed

55

The dictionary will include two extra entries at its end.

One is $NOS. with an address that indicates the end of the constant pool.

The other one is $SLTBS. with an address that is the beginning of the sub-

routines. BRLESC will also print $INDEX with an address that is one more

than the last index register used by the program.

The location field of a LIST card should not be used. Some

examples of Liar cards are:

T Tom i
JJJ.DX

LI ST(B. CODE) (S. CODE)<f>

a. vnu

When this pseudo order type is used, columns 11-76 may be

used to write one or more decimal number that are to be converted to

binary numbers and stored in consecutive memory positions beginning

at the address in the location counter. Thus the location field may

be used to specify the address or name of the first number on a DEC card.

Each number should be separated from the following one by a right paren-

thesis, a leading left parenthesis is optional. A f> after a number causes

the rest of the card to be ignored. Extra right or left parentheses

do not cause memory space to be skipped. Commas and leading zeros may

be used on any part of any number.

FORAST allows three types of numbers; (l) floating point,

(2) fixed fraction, and (3) integer numbers. Any type of number may

be written anywhere on a DEC card.

1. Floating point numbers have the general form of

where + dd..d is the coefficient and + e ... e is a power of ten

50

exponent and may be omitted if it is zero. The leading F is not

necessary if the MODE arithmetic (See MODE page69) is floating point.

The leading + sign on the coefficient is optional. A decimal point

may be punched anywhere in the coefficient, but if none is punched, it

will be assumed to be at the right end of the coefficient.

If the MODE arithmetic is floating point then all of the

following examples are floatin0, i"ioint numbers*

DEC(10)P-U.1).92-04)2,1»62,1^7)-1.45 <j>

On BRLESC only, an exponent may be started with an E and

floating point numbers may be followed by a U and a positive integer

that indicates the power of ten by which the number should be unnormalized,

2. Fixed point fractions may have the general form of

X+dd •••• d+e«-eB+s-»sD+r««r

where + e**e is a power of ten exponent, + s«'S is a binary scale

factor and + vr is a decimal scale factor. The exponent, both scale

factors and leading + signs (except on the exponent, to show where the
_ J. -U -1 _--\ _._._ -.—I-.1 .-....-. 1 rnV»„ ~\ ^nAJ -rm V -1 o nr.4-4 An.1 •• -f» o "D **•*• Tl eA.pOiieui> ue^ius/ aic ujiuiuua±(xuc _i.cenj._i.ug, «. XD U^OIUIICU 11 a. u ui u

scale factor is specified or if the MODE is fixed point arithmetic. ORDVAC

fixed point fraction numbers must be less than one in absolute value after

+.V.P scale factors are a^^lied. E5-LESC fixed """"oint fraction numbers mav be

as large as sixteen in absolute vaxue. xr the MODJS is fixed point, fixed

point fractions must have either a decimal point in the coefficient or a

scale factor. If the coefficient does not contain a decimal point, it
 1 1 I I 3 „ X iV« 1 •"UX W1J.X ue ttööumeu au one ix^iiix

Examples of fixed point decimal fractions are:

DEC(Xl+.2B-5)-31.7B-3D-2) + .17-2B+2) #

57

3. Integer numbers may have the general form of

I + dd ••• d

•where the + sign is optional. A leading I must be used when the MODE

is floating point arithmetic. A decimal point is ignored when a leading

I is used. A decimal point is not allowed if the I is omitted and the
_^Q

MODE is fixed point arithmetic. Integers are scaled at 2 " on ORDYAC

and 2~ on BRLESC. ("integers" with other scaling can be written as

fixed point fractional numbers.)

Examples of integer numbers are:

DEC(110) (I-1V7)I+1H)I21^861 $

I. DEC=

This pseudo order type is Just like DEC explained above except

it allovs each number to be preceded by a location name and = . Thus

the general form of each number is:

Loc. name = any DEC number

DEC = allows each number to be given a name without generating

any running code or using a separate DEC card for each number. Each

number must be preceded by a "name =", or just "=" if no name is to be

given to a number» Each number is separated from the next one by a

right parenthesis with a leading left parenthesis optional. A # causes

the rest of the card to be ignored.

Some examples of DEC = cards are:

DEC = (X=^.7)(J3=H3)EPS=.3-6)TX=X.51B-1* i>

DEC = (Al,l=l)(Al,2=17A)A2,l=-6)A2,2=+9.1 %

The first characters on either a DEC or DEC = card in columns

II - 76 may be either ORDVAC or BRLESC. If one of these names is used,

then the numbers on the card are stored only on the machine whose name

58

was used, THUS it is possible "tu write One program that uses diffexcnt

constants on different machines. This is sometimes desirable because

of the difference in word length (68 bits vs. ko). difference in float-

ing point number range (10— vs. 10— i, difference in speed \20 to 1/,

etc. between BRLESC and ORDVAC.

J. FORM

This pseudo order type may be used to specify FORMAT words

that may be needed for READ and PRINT or PUNCH statements. The FORMAT

words are used to describe the type of each field, (T), the length of

each field (L), and sometimes a scale factoi,(S)s The location field

may be used to give a name to the format being specified. Successive

field definitions may be written in columns 11 - 76 with each one

separated by a right parenthesis with an optional leading left paren-

thesis. A "•p" causes the rest of the card to be ignored.

Each field definition HSUV have one of three forms:

(T) just a type

fT_T.^ +wne ar\A 1 Pnir+.h v-1---"/ "jr— —"— —— — o•

(T-S-L) type, scale factor and length.

T,S, and L may be specified only by decimal or sexadecimal

numbers. (Sexadecimal numbers must have a leading zero.) Numbers within

a field definition are separated by a dash (minus sign).

\ t s- _ ___ ^

Example: FORM (9-12;i-2Mb-5-10;2 f>

xne types <ji ij.ej.ut> BIJ.U*CU mc em IUHUWD,

T = 1 Repeat the previous fields, beginning with the

iieiu tu i«er oue xao u ici^ao ^jrpc, •lJ o i mro »ucic

L <256. If there are no previous repeat types

in the format, it is repeated from the beginning.

59

If more numbers remain to be read or printed,

the format is repeated from the beginning and

a new card is begun. If any FORM card does not

have a 2 type as its last type, the translator

automatically adds a 2 type unless the next card

Is a CONT card» Thus if a single format defini-

tion requires more than one card, all cards after

the first one should be CONT cards. S and L are

not used.

T = 5 Skip L columns where L < 256.

T = k Integer field.

Input: Read an integer that is punched anywhere

(may include the sign column) in L columns and

store the number as an integer (L <256). Blank

columns before and after the integer are Ignore^..

Digits to the right of a decimal point or to the

right of a blank column in the middle of the

number are ignored. The sign may be punched in

any column of the field that is above or to the

left of the leading digit.

Output: Take an integer number from the memory

and print it at the right end of L columns. The

sign will be punched in the leftmost column and

will not be double-r*unched (a sign and digit in

the same column) unless the double punch option

is being used. Columns to the left of the

integer will be blank.

60

T = 5 Print card counter.

Input: Skips L columns, (L < 16)

Output; Increase the absolute value of the card

counter by S and print it in L columns. The card

counter is kept as a fixed point fractional

number (at 067 on BRLESC and 0JJ2 on ORDVAC)

scaled at 10" . The length of the counter field

should not he changed unless the counter is set

to zero. (The ZEROCC subroutine should be used

to set it to zero.) If the output does not use

the 'whole card, the counter is printed at the

right end of the card regardless of vhere the

format might say it should be printed. It will

not be printed if there are not enough columns

left to print it• The counter may us negative

and leading zeros are printed.

T = 6 Fixed point fraction.

Input: Read a fixed point number from L columns,

assume a decimal point after S columns from the

left, (not counting the sign column if single

punched signs are used) and store a fixed point

fraction number. If a decimal point is punched

in the field, it is used instead of the assumed

point after 8 columns.

Output: Take a fixed point fraction from the

memory and print it in L columns. S is ignored.

Leading zeros are printed.

T = 7 Fixed point fraction with decimal point.

Output only: Take a fixed point fraction from

61

the memory and print it in L columns with a

decimal point printed after S columns. (The

number printed will always "be on the right of

the decimal point except on BRLESC where the

number can be as large as sixteen.) Leading

zeros to the left of the decimal point are

pnn u6n.

T = 8 Alphanumeric

Input; Read and store the six-bit representation

of the characters punched in L columns. Only the

rightmost 6o bits of BRLESC words are used to

store alphanumeric characters. If L < 10, the

characters will be in the left portion of the

sixty bits. If L > 10, the characters will require

more than one computer word and will use as many

consecutive memory cells as are required. Each

new field starts exactly at the address specified

in the entrance sequence regardless of the length

of the previous field and begins storing in the

left part of that word.

For ORDVAC, the rules are the same except the

rightmost 30 bits of ORDVAC words are used and

hence a maximum of 5 characters are stored in

each word. A new consecutive word is used after

each group of five characters are stored and the

number of characters stored is not necessarily

a multiple of ten.

Output: Take L alphanumeric characters from the

memory and print then in L columns. Characters

are taken from left to right from the rightmost

60 bits of BRLESC words. If L > 10, characters

are taken from the next consecutive word or words

until L characters have been printed.

62

For QRDVAC, the characters are taken from the

rightmost 30 bits and a new consecutive word is

used after each group of five characters.

Note that for "both input and output, only one

address is used from the list in the READ, PRINT

or PUNCH statement for each alphanumeric field

regardless of its length.

T = 9 Floating point number with exponent.

Input: Read and store a floating point number

from L columns where the last 3 columns (2 columns

if use double punched signs) contain an exponent.

A U.eCLIIia.-L jJUJ_Ill/ la O.OOU1UCU. a± OCJ. u ^WJ-UUUID . J.J.

any column actually has a decimal point punched,

it is used and S is ignored.

Output: Take a floating point number from the

memory and print a floating point number in L

columns with an exponent in the rightmost 3

columns (2 columns If use double punched signs).

The exponent is decreased by S before printing

but a decimal point is not printed after S

columns. Leading zeros of positive exponents

are not printed and the coefficient part of the

number never has leading zeros unless the number

is zero. A zero number will print a coefficient

of all zero characters =

The standard 7ÖRAST output format defines 6 of

10 or OK Input: Read a number from L columns and store it

as a floating point number. The number may be

punched in either fixed point form or floating

point form with an exponent. Blank columns are

63

lenored and either coefficient or exponent mav

start in any column within the field. If there

is an exponent, it must begin after the first

blank column or punched sign that occurs after

the coefficient A decimal ""^^int is assumed

after S decimal digits that are punched for

the coefficient or if a decimal point has been

TYiinr>Vii=rl O" t.h» r>nyrl - 11". 1R HKprl nnrt R IK Icnnrcti.

Signs may be either single punched or double

punched regardless of how this option is set

except that a zero must not be punched under a

sign (.ßnjjüüu restriction). i/rne zero WOUIQ De

used on ORDVAC and ignored on BRLESC.)

This type of field is used as the standard FORAST

input field. The standard input format defines

6 of these 10(or OKj type fields of 12 columns

each.

Output: Take a floating ^oint number from the

memory and print it as a floating point number

with an exponent in the last 5 (2 if use double

TMinrOi sißTis1) columns and a decimal point printed

T = 11 or OS Input: Read a fixed point number from L columns

and store it as a floating point number. A

decimal point is assumed after S columns of the

number. (Don't count a single punched sign

column;. ii a aeciiuu-x pu±u^ ±t> ^uumcu un one

card, it is used and S is ignored.

Output: Take a floating point number from the

memory and print it as a fixed point number j.n

61+

TVio niim'ho-i- TO n"Mcrnf-H- if nnaaililp.

so that its decimal point is after S columns of

the number but the decimal point is not printed.

If the number has more than S digits before the

decimal point, the decimal point will actually

be printed where it belongs. On BRLESC, if the

decimal point falls outside of the allotted L

coxumns, OJJ.6 nuiuusr xs pnnucu as a j.xoaoing poino

number with an exponent (if there are enough columns)

Leading zeros are punched.

T = 12 or ON Input; Not allowed on ORDVAC input. On BRLESC,

it is the same as type 10(0K) except when nc

i^QrtiTiiQl -r\ *"» •? vt +• -i c? TM i r-i /-» Vi o <-! -i vi + V\ £-• -P-ieali^ -i + ne?
<U.K^ V-, .l_Lli.C~J-.-L ^^-Lll U J-ü jy * (_JV J- v.- XXV- w. -L.J.JL L/J-1V-- X -L.V.- _l_vA^ J- \J J_ O

assumed to be at the right end of the number. (S

is ignored)

Output: This is the same as type ll(OS) described

above except that the decimal point is actually

printed and leading zeros are not punched or printed.

T = Ik or OF Input and Output; This indicates "end of card (or

line)". A new card (or line) is started without

starting at the beginning of the format. This

allows multi-line formats to be written without

the necessity of using all of the columns on each

line. If this type Ik is used at a point where a

new line would begin anyway, then it is ignored.

This means that a type Ik at the beginning of a

format is useless and successive type ll+*s do not

cause any blank lines. At least one column must

be used or skipped between Ik's to get a blank

line (or read an extra card.)

65

When a type lit is used in conjunction with a sub-

group specification, the subgroup count does not

start over at a type Ik; it continues counting

and causes a new line and the re-use of the

beginning of the format when it is exhausted

T = 15 or OL Input; Not allowed.

uu opu u • ü-LxüWeu. onj_y on && \ iriipo wnei

(firing tables print) subroutine is being used

by the insertion of a SYN(F.T.PR = F.T.PR) state-

This format type can be used to change the

sign option or the double punch option anywhere on

a card. S is a six bit character (written in

decimal or sexadecimal; that will be used for the

plus sign and L is a six bit character (written in

decimal or sexadecimal) that will be used for the

minus sign. (A y row sign is 010 or 16 and an x

row sign is 020 or 32-) A fourth number of 0 or 1

may be specified after the L to indicate the setting

of double launched Q1" ^~i"ele nuncherJ si^ns respective!".

All of these options apply only for the current

PRINT or PUNCH statement, a new statement returns

them to their previous values.

F.T.PR Modifications:

When the F.T.PR subroutine is used on üRLESC, (by insertion of a

SYN(F.T.PR = F.T.PR) statement in the program) the above rules and

formats are modified in the following ways:.

1. Adding 0^0 or Gk to any of the format types that control printing

of numbers will cause a sign that is the opposite of the actual sign of the

number to be printed in an extra column at the right end

UU

This extra column will not be included in the number of columns specified

by L. The normal sign will precede the number and if the number is zero,

neither sign is printed.

2. Adding 080 or 128 to any of the format types that control print-

ing of numbers will cause the leading sign to print immediately to the left

of the first digit of the number; i.e. it prints a "floating sign".

3. All numbers will have at least one digit printed in front of the

decimal point. For numbers less than one, a zero will be printed before

the decimal point unless there isn't space for it.

k. A number printed as zero will not have any sign printed.

5. A floating point number greater than 10 will cause a blank

field to uc printed in its place.

6. All numbers will have leading zeros printed as blanks up to the

decimal point or the first non-zero digit, with the exception of one

zero digit immediately before the point.

K. SEXA

This pseudo order type may be used to store sexadecimal

constants. Columns 11-76 may be used to write one or more sexadecimal

constants with each one enclosed in T>arentheses = f The leading left

parenthesis on each one is optional.; A -p causes the rest of the card

to be ignored. The first symbols appearing in columns 11-76 may be

either ".ORDVAC" or "BRLESC" and will cause the card to be processed only

on the computer whose name was used. Since ORDVAC words are ten sexa-

decimal characters long and BRLESC words are seventeen sexadecimal characters

long, it is usually necessary to write separate cards for each computer.

67

The characters 0 to 9 and K,S,N,J,F,L are used to

represent the sixteen sexadecimal digits. If a constant is written

with fewer characters than required to make up one computer word, the

digits will be placed at the right end of the word, thus (3) is the

same as (003) and is also the same as an integer number 3. The

character Z is also allowed but may be used only once in a constant.

The Z represents a string of zeros that is long enough to fill out

the computer word. Thus (6Z8) will have a leading 6 followed by zeros

until the last digit which will be an 8. A Z may be used to replace

one string of zeros in a sexadecimal constant.

The location field is used as the location of the first

constant on the card.

Some .examples of sexadecimal constants are:

SEXA(5 2K) 921J0F1+L) 10

SEXA BRLESC(032 ZkK)KKZ)kLL)1>

On HRLESC only, an A may be used to represent five sexa-

decimal zeros and an M may be used to represent five sexadecimal L's

(fifteens) in sexadecimal constants.

L. END

The last card of every program must be an END card. It

causes the translator to stop reading symbolic program cards, to complete

the translation of the program that has just been read and to then start

running the program. Cols. 11 - 76 may contain a GOTO statement that

specifies the location of the first statement or instruction that is

to be done in the running program. If no GOTO appears, a GOTO (OlOO)

is done on ORDVAC and a GOT0(01040) is done on BRLESC. Note that the

first statement to be done does not have to be the first physical state-

ment in the program. A Jo causes the rest of the card to he ignored.

BRLESC allows GOTO(N.PROB) or GOTO(C.PROB) to be used on the END card.

58

The location field of an END card is used in the normal

way. If it is not "blank, it specifies the location at which the machine

"begins to assign the symbolic names that were not assigned by the pro-

gram. (This machine assigning always starts with the address in the

location counter after the END card has been processed = ^ On T}RLECV"1

when this location field is not blank, all of the machine assigning

will be done from that address.

Q/^VYIQ ovQ-m-r,! ca i-i-f" TWT1 r>aT*ri.Q HVP?

C3 + 1 END GOTO(l.l)£

M. UATJi

This pseudo order type allows the current date to be punched

in columns 11 - 20. This date information will "be printed out in front

of the running output and also in front of the dictionary when it is

listed. On BRLESC,. the date is obtained from the internal clock and

DATE cards are ignored.

sample: UATJS AUG 5>°5

This pseudo order type allows columns 11 - f6 to "be used

for comments. The entire card is essentially ignored. (The location

field is processed on BRLESC.)

This pseudo order type may be used to specify the type of

arithmetic (fl. pt. or fixed pt. fraction) that is most used in the pro-

gram that follows. It controls the type of arithmetic and number con-

version in arithmetic formulas and DEC numbers that do not explicitly

specify a different type of arithmetic.

69

If no MODE card is used, the mode is automitieally set to

floating point and thus a MODE card is not usually needed. To set the

mode to fixed point fractional arithmetic, columns 11 - 76 of a MODE

card should contain FIX(or just X). To set the mode hack to floating

point arithmetic, FLT(or just F) should he used in columns 11 - 76.

Each MODE card is effective until the next one, however it generally

isn't necessary or desirahle to use many MODE cards. Note that the mode

cannot he set. for integer arithmetic.

The mode is not used on ORDVAC assembly orders, thus an

ORDVAC assembly order is not floating point unless it begins with an

F. (See page 108). The mode is used on BRLESC arithmetic assembly orders

except the shift order. If a BRLESC A,S,M,D,C,SQRT, or PMA order does

not explicitly have an F or X parameter specified, then the mode is used

to set the order to the type of arithmetic that was specified on the last

MODE card. A MODE designation of FU may be used on BRLESC to indicate

"unnormalized" significant digit arithmetic. (An FU mode on ORDVAC is

the same as FLT.)

The mode setting affects only the conversion of numbers on

DEC (or DEC -) cards and the translation of the arithmetic operations in

formulas. It does not change the type of subroutines used. Since practi-

cally all of the standard subroutines included in FORAST do normalized

floating point arithmetic, new subroutines with new names must be added

before subroutines can be used in fixed point or unnormalized floating

point modes of arithmetic. It must also be remembered that exponentiation

of the form A**B uses the floating point POWER subroutine whenever B is

symbolic or is a non-integer number whose fractional part is not .5 or is e

integer larger than 15.

fu

The location field should not be used.

Examples: MODE FLT

MODE FIX

P. STOP«

This pseudo order type may he used to specify a location

at which the following code should he stored. It uses the location field

in the normal way or if it is blank, it uses columns 11 - 76 as a location

Ileia> THUS a oxurv cttru may ue UDCU. »ucu uuc WXDüGO w O^FC^-HJ =* xu^ai/iuu

that requires more than six columns. A STOR card does not cause space to

be left, putting a location on a STOR card is the same as putting it on

one i uxxumug i;cu~u.

Exam-Dies: STOR 0800
emrso A A c: _i_ 1 rr

Bl STOR

(=1. NUÜ.

This card TDV be used to move the memorv snace that the

translator uses for a "constant pool". Constants that are written in

formulas (and other places where a store address is not provided) are

stored in this "constant pool". This normally starts at 0**0 on ORDVAC

and 0S0 on BRLESC. A different starting machine address may be speci-

fied in columns 11 - 76 of a NOS. card. This specification must be

made before any constants are stored and should normally be done before

me 1 J.TH L, uiucr ui uuc jjiu^iom. J.IIC i.uuo UQUU j~Oi ualiilWvi us auscu

very far. Since it must stay in the memory during translation, it cannot

be put any place that would destroy a part of the translator. On BRLESC,

4 4- —,1!!34. atav fcptvsapr. 0sr> &.n* ncsrvr. o->~ monn + ,-, riiftnn a-na ^n ORT-ivan -i +

must stay between 040 and 029L. On ORDVAC, the maximum size of dictionary

Yl

cilluwed ia reduced "when the Constant pool IS HiOVed duWIi v. larger

address) in the memory. If the constant pool goes beyond OLL (or

010^0 on BRLESC), then the location counter must be set so that

it "begins at an address that is larger than the usual 0100 (or 010i+0

for BRLESC) starting address.

Examples: NOS, 08o

NOS. 0L0

R. FTTS

This order type may he used to change the temporary storage

that translated formulas will use in the running code. The OP.DYAC

normally uses 020-05L for this purpose and BRLESC uses 09O-OKL. Columns

11 - 76 of a FTTS card may contain a machine address that will he used

as the initial address of J2 words that may be used for temporary storage.

(While 32 words are reserved for this purpose, most formulas do not

require more than four or five words for temporary storage.) Each FTTS

card is effective until the next one.

The location field should not he used.

KITS cards are not needed in most programs. They are only

needed when formulas are used to code a single valued function subroutine

that will be used in other arithmetic formulas. In such a case, two FTTS

cards are needed; one at the beginning of the subroutine to move the

temporary storage away from its normal place and one at the end of the

subroutine to set it back to normal.

Note that the same FTTS cards will not usually work for both

0RDVAC and BRLESC.

Examples: FTTS 010

FTTS 020

72

S. ASGN

This pseudo order type is the same as SYN (See page kk)

except there is no check for reassignment. It should he used only when

it is necessary to change the assignment of a previously assigned

symbolic address. This is the only way that an assignment can be changed.

£ixampj.e: Aüü« (ä = uouu;^« = o) 7>

T, SUSP.

This pseudo order type is the same as ASGN except that the

HCWU^U IA.K?^,U. £>^ ^ »X.'.J. A-V-U U.U DUW1 V/UUX11V.O ^ V^ A V^ *_, fj ^ i. WJ. »lUgO.^. ' 'r *ril l*~ '"* ^ » 1IUWC YC1

it is recommended that SUBR he used only to define the names of single

valued function subroutines that are coded as part of the program and

are used in formulas in the main ^^rt of the *rirocrr*am. Such names should

be listed in columns 11 - "j6 with each name enclosed in parentheses. A

$ causes the rest of the card to be ignored. These subroutine names

must he at least three characters Ion0, and will not he marked as sub-

routines in the dictionary listing. The SUBR card must appear in the

program before the names are used in formulas.

Example: SUBR (FIX)(F2X)GTW3 $

IT »Tim / TJT3T -cia n „_-|„ i „„„_„,q -V,,,. rtDT\1TM-'\ u. .rt-Lirn \ jarvuEiuo uiu-jf t -L^A-iux cu. UJ \JI\UIX\\SJ

This pseudo order type allows alphanumeric constants to be

stored. Columns 11-20 will be stored as ten six-bit characters in one

BRLESC word or two ORDVAC words just as it is punched on the card. Each

succeeding ten column field is stored in consecutive words if it is not all

Dianü. J.I any ben UU_LUIIII± IICJ.U _LO a.-i—L. U-LCHX*., _ uu5j.1uu.ii5 -. ^ V,V>J-W..».I .—.., -« —

not stored and the rest of the card is ignored. The last ten columns (7i-8u)

are never used on ALFN cards. CONT cannot be used to continue a string

71

of alphabetic constants, each card must have an ALFN order type. Note

that at least one (two on OKDVAC) alphanumeric word is always stored

from each ALFN card, even if it is all "blanks. Also note that some

multiple of two words is always stored on ORDVAC.

Example: ALFN ERROR PRINT X = 0

V, O.Ts (BRLESC only)

This allows arbitrary symbolic order types and their sexa-

decimal equivalents to be defined. Columns 11 - j6 may be used to

define any number of order types. Each definition should be of the

form: (symbolic order type = sexadecimal equivalent) and each defini-

tion should be enclosed in parentheses. After a $, the rest of the

caru. is ignore—.. _„e symuO-i-ic or_er ^ype mus^ nov> coni>a_n any of the

special characters and the sexadecimal equivalent may be written either

with or without a leading zero. The primary purpose of having this

nseüdo order tvoe if +•<"> «-11 nw + _e arbitrarv definition of the inter-

pretive orders on BRLESC, however it may be used to define any new order

types or to define new names for old order types. (See page 136 for a

list of BRLESC order types.) Note that an O.T. definition defines all

eight bits of the order type, A maximum o_ ^wen^y new order types may

be defined in any one program.

•p-.___.i__. n m /'i-T—TV^ I AT_T OW _x__pxefcs; ->._. \n-_iv/\ni*-_-/^

O.T. (MM=_iOADD=20)$

oUuröutines.

The FORAST compilers include about fifty standard sub-

routines that are available for use in any FORAST program. If the

standard name of any of these subroutines is used anywhere in a pro-

gram, the compiler automatically provides for storing that subroutine

as a part of the running program. These subroutines are stored immedi-

ately before the decimal input-output routine and use as much space as

(4

is required to store them all consecutively. (The "£ SUBS" name at

the end of the dictionary lists the address at which the subroutines

begin.) A name of a subroutine should not be used as the name of a

variable although this would work if the subroutine is not used in the

program. The name of a subroutine actually represents the entry word

which is usually the first word, however some subroutines have more

than one entry and hence may have more than one name. Some subroutines

also use other subroutines and the compiler always stores all the re-

quired subroutines but never stores the same one twice. The dictionary

only shows the subroutine names that were explicitly used in a program.

All of the standard subroutines that do arithmetic do float-

ing point arithmetic and hence must only be used when arguments are float-

ing point numbers. New subroutines with new names would have to be added

to do any other type of arithmetic.

The following floating subroutines have one argument and one

result and may be used either in arithmetic expressions or in an ENTER

statement:

SQRT

COS

LOG

EXP

ARCTAN

ARCCOT

ARCSIN

ARCCOS

TAN

nrrr

SEC

CSC

SINH

vy WW41

TANH

WHOLE

TPRAPT

ABS may also be used for absolute value but cannot be used

in an ENTER statement. It may be used with any type of number but

remember that BRLESC index registers will always be considered to be

positive by an ABS command.

75

The angle arguments and results for the above subroutines

are in radians. The result of ARCTAN and ARCSIN will be in quadrants

I or IV and the result of ARCCOT or ARCCOS will be in quadrants I or
 x

II. Note that LOG is used for the natural logarithm and &XP is the e

function. The SIGN function produces a result of -l(fl.pt.) when the

argument is negative, a zero when the argument is zero, and +l(fl.pt.)

when the argument is positive. SINE, COSH and TANE are hyperbolic

functions. The WHOLE and FRACT subroutines produce the whole part or

the fractional part of a floating point number as another floating point

number without any rounding of the argument. The argument and result

addresses are indexable on all of the above subroutines and the argument

may be an arithmetic expression only when the subroutine is used in an

ttllUUilCl/H; CA]llgoDlUUi

The rest of the subroutines listed here are normally entered

with an ENTER statement. All of the addresses are indexable except where

noted otherwise. A small letter means that the subroutine uses the

effective address itself (not its contents) as an integer number. Under-

lining indicates those argument addresses that are optional and may be

omitted. The addresses used here only illustrate the number and type of

addresses renuired for each subroutine. In a program, they may be re-

placed with any other names or addresses.

SDTCOS)X)SINX)COSX)p# Assumes X in radians when p = o or is omitted.

Assumes X in degrees when p = 1.

Assumes X in mils when p = 2.

Assumes X in circles when p = 3- (l circle =

36O degrees.)

POWER)A)X)APX)$ Raises A to the X power where X may be

either fl. pt. or integer number and

A > 0 unless X is a whole number.

ARCSC)SINX)COSX)X)# Computes X in radians from a known sin

and cos. (-jt < X < it)

ARTAN)Y)X)ANGLE $ Computes arctan (Y/X) in radians.

(-jr. < ANGLE < it)

7£

V -- \ - - * * -* WH. FRA JX)WHX)FRAX)f,

CVXT0F)VN)lN)5t

rWTl.lWAT \"TT»T\ -T»T \/«/

CVITOF)IN)FN)£

JLUXEAXE. jrH; J.UJ)J>

FLOAT)IN)FN)#

READ BL $

PRINT B or PUNCH B#

SEXA PR)A)B)£

V £ =*4= A. J J- - .-u — n —

BCMP0)A)B)5t

Separates a number A into i"cs wnoxe part

and its fractional part.

Converts a fl, pt, number to fixed point

fraction.

Converts a fixed pt. fraction to a fl. pt.

number.

Converts a fl. pt. number to an integer

after rounding by 10 .

Converts an integer to a fl. pt. number.

Qr,-~m «r. I'll LM'fYT r wjac CXD will ux

Same as CVITOF

Read a "blank" card.

Print a blank card«

Sexadecimal print from A to B.

ORDVAC: A and B are not indexable. A

card with A and B on it is printed and

then the contents from A to B are

printed with eight words per card.

Every word from A to B (inclusive) is

printed.

BRLESC: Prints the address of the first

word on each card at the beginning of

the card. Prints four words per card

but does not print cards that would

have all four words of zeros.

Binary card memory print out. Prints

the contents of the memory from A to B

on the binary cards with key words for

re-reading by the standard program input

routines.

77

UKUVAU; A ana a are not indexable.

Words of all 0 or all 1 bits are

skipped except for the first word in

a string of such words.

BRLESC; Words of all 0 hits are skip-

ped except when there is only one

A.KEM>)A)n)f>

A.PRINT or

-/--/--/#-

Alphabetic card read and print routines.

A is initial store address and n is no.

of cards, _ _ _..._

C3iis on BELESC and sixteen cells on

ORDVAC. BRLESC allows a third optional

address "c" that is the nvnnber of

columns per line for variable length

line tape input or output. Each line

starts at a new word and requires TZ\
L-LUJ

The following subroutines may be used (in an ENTER statement)

0(J (JUQUgC (jyO-LUliO J-Ii WC U.CCJJUO.-L lll^Ul.-UUl.pUl/ IUUI/111C,

ZEROCC Sets the "card counter" to zero.

OEl±X»X"X QCO lUr U.UUU-LC JJLUlUiXCU. Xil^UO OlgUO.

SETDPO Set for double punched output signs.

SETSPI Set for single punched input signs.

CJTTTiCSPn Hof •Fr.v ainrrlo mmpVier) rm+.Tiii+. sn'miR.

SETMSI Set minus sign for input.

CTBTTMSn So+. m-lrmc cion for- 0ll+ni1+.

SETPSI Set plus sign for input.

SETPSO Set plus sign for output.

All are followed by one

non-indexable addresses

that is 0,1,2 or 3.

0 means blank

1 means v(l2) punch — — _ w% 1 ^ —

2 means x^ll; punch

3 means x or y punch

NOTE; SETPSI doesn't do anything; all input numbers that are not

78

V . \ \
MAX.JAJBj, WAV __-._• „J „ XV,« "1 r, -w, r~r ^ ^. 4-

J.YLHA, 11I1UÜ U11C laigco u ULUUUU1 wx \i3-.j •»-'j

MBJ.)A)B))Q,)R#

i'lru/v» _Ly juy w y /*^/iv"

and stores it in R where A, B, . . .,Q are

floating point numbers. Note that the

number of addresses is variable (there must

be three or more) and R is used here to

denote the last address.

MUT. finds the smallest number of

(AJBJ....;Q) and stores it in R where

A,B,. ...,Q are floating point numbers.

MAX,I finds the largest integer number

of (I,J, >Kj and Stures it in R.

»ma T''ITVT''\ \V\T& lYj_l_l.il ._l.ya.yu/ y.-yxyv.

M0D.)A)B)C#

MAT.INV.

SY.SNE

ST.INV

F.N.E.

F.O.MAT

MAT.M

MUT.I finds the smallest integer number

of ^,I,J.> jKy1 and stores it in R.

MOD. computes C = A(mod B) where A,B and C

are floating point numbers. It is the same

as the FORAST formula C = A - WH0I_E(A/B)*B.

The following matrix manipulation routines are available:

Bis Is Cl^l are addresses

of the first elements of matrices.

n is the number of unknowns frowst.

Co is the address of the first

element of the solution.

PET is the address of the determinant.

U-L

y.«.-!. j j_y ii /_____ y_______/"

Co and use DET it is

necessary to write

_n i ^n^TffirM

)Ai,l)n)Co)DETfr

Ul.l}n}Cl}WÄ /—•—/ t - * •

\ A -. l\..W

)Al,l)Bl,l)Cl,l)i)

.i)k)#

1

J

coefficient of the given equation.
T

is the number of rows in A(or A).

A(or A") and is equal to tne

no. of rows in B(or B).

ORDVACy

'is the number of columns in
„Ts

.tH or a).

MAT.MP)Al,l)Bl,l)Cl,l)i) NOTE: The augmented column is

j)k)z)ra)ca) not counted.

rb)cb)rc) ccy» 7, is 3 sexadecimal characters

(preceded "by a zero) that

defines the options to be used

in the matrix multiply (MAT.MP)

subroutine. The sexadecimals

correspond to the three matrices

A;B;C respectively: 1 is trans -

pose, 2 is augment, 4 is accumulate

(Use k for C only; options may be

combined; augment options ignored

if r and c are specified.)

ra is the spacing between first

elements of successive rows of

matrix A.

ca is the spacing between the first

elements of successive columns

of matrix A.

rb,cb, and rc,cc have the same mean-

ing as ra and ca except they

apply to matrices B and C

respectively.

NOTE: These r and c optional

addresses cannot be omitted

except omission by pairs

from the e

statement.

MOTE: When the transpose of a

dimensions of the transpose

must be specified.

ou

Additional comments on the above matrix subroutines: The

S.N.E. (Solve normal equations) assumes all elements of a matrix having

n rows and n + 1 columns are stored in the memory by rows. The SY.SNE

(symmetric solve normal equations) assumes that only the upper triangle

of an n x n + 1 matrix is stored and SY.INV (symmetric inversion)

assumes that only the upper triangle of an n x n matrix is stored.

S.N.E.; MAT.INV; SY.SNE; and SY.rNV all replace the original matrix

with its inverse. On ORDVAC only, the S.N.E. replaces the extra vector

column with the solution vector besides storing it at Co if a Co is

specified. The SY.SNE stores the solution vector only at Co. The F.N.E.

(form normal equations) assumes that the upper triangular augmented

matrix has been cleared by the program before it is entered with the

first equation. The F.N.E. produces a matrix that can be solved with the

SY.SNE. The F.O. MAT (fill out matrix) will take an augmented upper

triangular matrix (as generated by F.N.E.) and replace it with an

augmented square matrix ^as needed by S.i»..u./.

For BRLESC only, the S N.E. will attempt to rearrange rows of

the matrix when it finds a zero diagonal element while it is computing

the inverse. The row rearrangement does not affect the arrangement of the

solution vector, however the inverse matrix will not be correct if any

rows were actually rearranged. Rearrangement can be avoided by use of

the "not" option as explained below.

Additional BRLESC S.N.E. options:

S.N.E.)Al,l)n)Co)DET)drow)dcol)Bl)db)dc)ZERO)not)ft

If drow is specified, it is the spacing between rows; x.e.

the address A2,l - address Al,l.

If dcoi is specified, it is the spacing between columns

(which is the same as spacing between elements within a row).

If Bl is specified, the n positions beginning at Bl are used

as the column vector instead of the (n+l) column of the matrix.

If "db" is specified, it is the spacing between the elements OJ.

the column vector.

81

If "de" is specified, it is the spacing "between elements of

the solution vector.

If ZERO is specified, it is the address of the number which

will he used to check for zero diagonal elements. Those diagonal elements

whose absolute value are less than ZERO will be considered as zero for the

rearrangement test.

If "not" is any address different from zero, the S.N.E. will

not rearrange any rows.

When arw nr- all nf t.hpss craf i ncr nnti nns R.rp omi t.t.pd lor zero),

the normal consecutive spacing of elements is assumed.

For MA.T.HTV on BRLESC, "drow", "dcol", ZERO, and "not" may be

specified when needed and have the same meaning as for the S.N.E. except

"not" has the opposite meaning. MAT.INV does not normally rearrange

any rows and will do so onlAr when ' not" is specified as non-zero =

Note that when optional addresses are omitted any place except

at the end of an ENTER statement, the right parenthesis must still be

written for each omitted address. In particular, the above options for

the MAT.INV subroutine must correspond to the same position on the list

of addresses as used by the S.N.E. since they are just different

entrance points to the same subroutine.

(Runga-Kutta-Gill solution n

of ordinary differential Do

omiQ + i r\r~\ a 1

R.K.GD is the return from the

derivative sequence.

TTCO r,nvn(n v ar>\4,

TT _ _ r\ r\rr\r\(TI T/ m \flf use u-uru^n.iv.ux;/«)

Yn

R.K.G1 is the re-entry for Ko

steps after initial entrv.

82

or

is the number of equations.

is the location of the first

«ni*rl nf t.hp rlpri vativp spnilfince.

(,must De a lert oraer on UKUVAI;;

is the address of the first

(, independent; variable.

is the address of the

corresponding derivative.

XiD one auuicüü w± one

corresponding error term.

(BRLESC only)

IUM is a Dxöcic oi jn memory cexxs neea-

ed for temporary storage within

the subroutine. Integration by

Use GOTO(RKGMAD)# at end

use Ur\j±\>\iusxäw.±)TO ror

re-entry at steps

after the initial entry.

o -n\TrnTP\-ni„ ^^^^^7m^T^mT \mri\T? d. o.xiiJ.n;ru7xyrj.;x/j.ijyj.u^D ft

(Simpson's Integration)

function routine.

G0T0(S.I.FF)#

Use

(Note: The function routine

must not ue put immeu. lately

after the ENTER statement.)

D.D.IN)X)FX)Xo)Fo)tpt)n}ix)

(Divided Difference Inter-

polation)

Must use all three

optional arguments or

none. If omitted,

(5)1)1) is used.

FT

T X

TL

TU

IT a

X

FX

Xo

Fo

tpt

automatically be started after

four steps of Rung-Kutta-Gill

i n + orrva + i An T?nno 1 o+on oi7oo
J-ll <-J^. gtj-L VA UXW11 • -L-K-^l^ *-X. U l»/V^^ OXij^O

are required. RKGMÄ. must be

re-entered for each change of

step size.

If KN is omitted, entire integration

will be by Runge-Kutta-Gill method.

of the function routine.

(must be left order on ORDVAC).

variable.

is the address of the functional

value at T.

is the address of the integral.

is the address of the lower limit.

is the address of the upper limit.

•l c? -t-lnci a ri A v»o t

error bound.

is the address of the argument.

is the address of the results

is the initial address of the

table of Xi's.

is the initial address of the

table of Fi's.

is the number of entries in

the table. (no. of Xi's)

Use this to interpolate

more functions using the

lue of X, (must

n is the number of points to use

in the interpolation,

ix is the distance between entries

in the X table.

if is the distance between entries

in the F table.

Ao is initial address of n a*s

(standard deviations).

use Eru'JiR).

NRN0S1) Ao)n)Bo H

^Normal Random no.

generator)

NKN0S2)Ao)n)Bo)$> n is the number of random

numbers desired.

Bo is initial address of resulting

random numbers.

(Use NRN0S1 for first entry in a program and NRN0S2 for all sub-

sequent entries.;

NRNOS.)Ao)n)Bo # (NRNOS. is faster than NRN0S1 on

/BRLESC.)

ENxER(SExNRI^T)^ may be used to reset NRNOS. to its initial sequence

of random numbers.

G.L.SQ

or

P.L.SQ.)^ix^F)ifW)Aiq)n)C)RUr)AT)iaf)EBMS)^})T)DBT)w)iw)EQSEQ)TSEQ <f>

(General or polynomial least squares data fitting.)

X For G.L.SQ, X is the location of the first term of the first

equation. Terms must be stored consecutively.

For P.L,SQ. X is the first independent variable.

For G.L.SQ, ix is the distance from one equation to the next

one. For P.L.SQ, ix is the distance from one independent

variable X to the nex\, one.

ix

la une fiir.riior, value for the fiTs-h equation or uolvnomial,

if

m

is the distance between function values.

is the actual total number of equations of "points" that are

+ ^ -K0 „CA^ in nnirmiitin» the fit. (it must not include those

skipped by using EQSEQ.)

61+

Al,l is a block of storage that must "be large enough for an augmented

\n x n; syrmnetrlc matrix,

n For G.L.SQ, n is the actual number of terms to be used in each

equation. (it must not include those skipped by using TSEQ.)

XWX J. . JJ kJQ^J li lO U11C XCOö UJ-ldli Oi-lC IIUIUUCX Ui UCX'lllS &11U. lö UilC

degree of the polynomial when all the terms are used.

C is the initial address for consecutively storing the n coefficients.

(Xt n s 38- n + 1 spaces must be allowed at C.)

R is the initial address for storing the m residuals,

ir is the distance desired between residuals, i.e. the increment for

the R address.

AF is the initial address for storing the m approximate function values.

iaf is the increment for the AF address.

ERMS is the store address for the root-mean-square error. Zero is stored

when m ^ n or when A W. ^ n.
1

SIG is the initial address for consecutively storing the n "sigmas".

1 v \,±

(if the inverse element A. . is negative, it is stored for SIG. and
1,1 1

T. = 0.)

T is the initial address for consecutively storing the n "t's".

T. = C./SIG.

DET is the address to store the determinant.

LJ is -hVio i rn* tinl &r\HTPCG nf +he uoi cr"h-t-G +n "ho ncöH

iw is the increment for the W address.

EQSEQ is the initial address of a consecutive sequence of numbers that

have a one to one correspondence with each equation (or point)

stored at X. A zero number indicates that the corresponding

equation (or point) is to be used and a non-zero number indicates

that it should not be used. Note that this sequence, if used,

85

TSEQ is the initial address of a consecutive sequence of numbers that ha\

a one to one correspondence with the terms in each general equation

or with the powers of X in a polynomial. A zero number indicates

that the corresponding term or power of X should be used and a non-

zero number indicates that it should not be used. Note that this
sequence, if used, must contain n zero numbers.

For BKLESC only:

COWELL)Do)At)p)n)m)Yo)Ko)Qo)Vo)$

(Coweil's solution of 2nd order differential equations.)

where: Do; At; Yo; Ko; and Qo are the same as for R.K. G.

except COWELL assumes the Independent variable is in Yo and fi is in Yi

and fi' is in Y.
l+n

p; n; and m are non-indexable.

p is the highest order difference to be used.

la otic uuiiiLJci wl .ions to be differenced.

m indicates that 2 steps of R.K.G. should be used for obtaining

each of the p + 1 steps necessary for starting Cowell.

V is the initial address of a block of n(p+^) cells that the o .- -•

subroutine uses to store the difference tables.

The derivative sequence should end with a GOTO (COW. DX)#>

statement.

A "COWXTR" (Cowell extrapolation) subroutine is also available

for use in satellite orbit calculations. See the separate description

of this routine for details.

EESSEL)X)jo "jo where X is the argument and Jo is the initial

(BRLESC only) address of six consecutive words for storing

the three Bessel functions of the first kind of

orders 0,1,and 2 followed by the three Bessel

functions of the second kind of orders 0,1,and 2.

The following group of BRLESC subroutines simplify computations

involving the real time clock.

ÖÖ

D ("•TJT'.PTJ oL Rtores +-Vio niirrpnt alnhaniim'heric clock readincr

CV.CLK)CR)FCR $

S.CLKS)CR1)CR2)

DIP 1o

at CR.

Converts the clock reading in CR to a floating

point number and stores it in FCR. This number

is the number of minutes since the previous

midnight and is precise to hundredths of

minutes. If the CR address is omitted (or

zero), the current clock reading is used.

This subtracts two alphanumeric clock readings

(CR2 - CRl) and stores the difference in minutes

(modulo 2h hours) in TTTF as a floating point

number. If CRl is omitted (or zero), the

"start time" of the problem is used. If CR2

is omitted (or zero), the current time is used.

CK. CLK)MAXT)DONE$ If the total time in the problem has run up to

this statement is greater or equal to MAXT

(a floating point number) minutes, then the

statement at DONE is done next. If DONE is

omitted, N.PROB is used as that address.

(Compile time is included in total time.)

The following group of subroutines allow easy use of magnetic

tape input and output on BRLESC:

ENTER(SET.Tl)u)E.T.)B):EMAX)v #

u

E.T.

is "taps unit; number. \1 ^ r^.-^ Q <f 11 <* iM y ui y -* u. -» -i_-T j

B

EMAX

is optional; if is zero (or blank) then the routine

goes to N.PROB when the END TAPE sentinel is read.

If specified (not zero), then the routine jumps to that

address when the END TAPE sentinel is read.

is the initial address of a block of storage that is

large enough to hold the largest block on the tape

being read.

is the last address in the storage block for this tape.

87

selection between 8o character lines and variable length

lines.

A -P Tr _ 1 -J-lnor-i fann -To VOQ r9 nnlir a c; HO r»ViQ r*n r»-h/=»r* l"irif=>c;

if v = 2, then tape is read only as variable length lines,

DiVx.'. U..L anuws ix jjiugictm uu i cau ua.ua. un uiagnc uit; uajjc. xo

sets the computer so that subsequent READ statements (or A.READ or READBL

subroutines) will cause data to be read from the tape unit specified.

The tape may be one that was made of..'-line from cards or it may be a

previous output tape. As many as six input tapes may be used in one

program by entering this subroutine at different times with different

tape unit numbers. If the unit number has been used previously in the

program, the data will continue with the "line" that follows the last

"line" that was read from that tape. Each unit should have its own

storage block if the program ever re--uses that unit because a part of a

block may need to stay there while another unit is being used. When

entering with a unit that was previously used, it is not necessary to

specify the storage block addresses; if specified, they will be ignored.

It is not possible to change the storage block once it has been already

assigned. The storage block may be longer than any block on the tape

but must not be shorter than the longest block that is read from the

tape. (Each storage word can hold ten characters.j The tape block

length can be variable and if any block is longer than the storage

allocated, the rest of the block will be ignored. All tape reading is

pciriLy cneuüeu ctiiu ie-iucxu xxvc IJJIICC ucxwxc tauaiug uxic; <_x A ^I-L^^^O ^^.± •u.

to be punched and a RUN ERROR card saying "PAR.ERRORu".

ine üi.J.. ^eiiu bet.Lye J aaurcüb üIIULLLU ucr ici u IULLCOO XU XO

actually needed. If it is zero, this tape unit is rewound, the computer

is set to read cards and control goes to N.PROB. If an address is

specified, then these things should be done by the program before going

to N. PROB.

öö

It is desirable that a standard end of tape sentinel be used

by everyone. It is also best to have a standard end of reel sentinel.

This routine uses "ENDbTAPEbb" (b is blank) as the end of tape sentinel

when it appears as the first ten characters at the beginning of a block

and the next ten characters do not say "ENEbEEELbb". When the next ten

characters do say "ENTfoREELbb", then it assumes that there is another

reel to be read on this same unit, so it rewinds the tape and halts at

08l so that the operator can mount the new reel. (The unit no. is in the

B address of the halt order.) Standard BRLESC tape 8 output will have

the END TAPE sentinel if the "rewind tape 8" switch was properly used.

When making tapes off-line, an extra block of one card with this sentinel

should be added at the end of all the data.

When reading tape, the three "header cards" that were

produced in front of previous FORA.ST or FORTRAN output are automatically

skipped. (It checks for "bbBRLESCbb" in characters 11-20.) A dictionary

or any other compiler output will also be automatically skipped.

When variable line tape is read, the vertical control character

anri anv i cmnTP r>hfl.TH.r>t.prs are icnored. The "A" end-of-line character

must appear to mark the end of the line but it is never stored as part of

the data. Any line may be read as l60 characters long with blanks being

used to expand the actual length to l6o.

A word within this routine is named SKP.TL and it may be used

to "skip tape lines". If it is set to an integer (not fl.pt.), then the

next tape read will skip that many "lines", (if the skip includes the

"header cards", then they must be included in the integer that is put

into SKP.TL).

It is permissible to set for tape unit u when the same unit

u is being used at the time SET.TI is entered.

ENTER(SET.Cl)#

The input data may alternate between tape and cards at will. ,

The use of SET.CI will set the computer for reading cards. (SET.CI is

a small subroutine within the SET.TI subroutine. If tape No. u is being

8Q

used instead of card input, then it sets for tape 6 input. If the

compiler is set for "card" input at the time SET.CI is entered, it

does nothing.)

ENTER(SNB.Tl)$

This subroutine will cause SET.TI to start a new tape block

Ti-'Uz-jirt -: -t- „^„4- n,,-.^^ 4-"U^> n^-;-t- +^o+ T ,- nllnvinyi+1 ir cc±-\- ^^i~ -t-o-r^^ T-VOTMI4- (dJsTR H*T

does nothing if computer is set for card or tape 6 input.)

-irmTmrn-o t rfnm m/^ \.. \-n\-onjr A"V \ T j „ ~ </
riTJi-CtTYy CldX« \L\JJ {JLJJ2JIX''U\^.J-L±11C p

This "set tape output" subroutine causes the subsequent PRINT

or PUNCH statements (or A.PRINT or A.PUNCH or PRINT B subroutines) to

tixioe ULLCLJ. UU.UJJU.0 Uli luaguc UIü uapc, j.o CI._I__LUWö öivio^uiiig uc owccn öCVCLCI-L.

output tape units, switching between tape and cards (which may be tape 8

at the operator's descretion), and also allows the line length to vary

between one and l60. All tape output will have the necessary control

characters for variable length line printing.

The parameters are:

u Tape unit number. Must use 0 to 13 but not

u ur i . x-ape u ^ur \jj üIIULU-U. ue LUICU X± t/ucic

is no card output intermixed with the tape

output and if it is not necessary to have the

^,, + ^,,4- ~v, *-. -~^^.1 "U-,r -T4-r.^1-P (T-P n _ n +Q-r\^
UU.UJ->U.U \JL1 O, i CCX UJ 4.0QC14. \ •t-L w — ^ > L^J^V-

8 is used. Tape 8 is the standard unit used

when getting "card" output on tape.)

B Initial address of a "buffer" block for unit

u.

BMAX Final address of the "buffer" block for unit

u. BMAX must be at least B + 7 (8 wds)* The

length of the block used is made mod 8 and not

more than 200 words are actually used because

of the 8K memorv limitation of the lUOl.

90

i.JJlC I'lCLA-UHLUU iJ.Ut ±Ci.i^ OU 1U1 IUU.Ü U.« \,-1- -» J_-Li.JA_ -a

160 or 132 if ever want to print on 1401.)

For initial entrance for each unit, zero is

nfiprl a a Hf\» D-P+OV*IJOT«^O ryot-./-* moonc nn nViflficro

When switching is done between one or more tape units, each

one must have its own buffer block and line length. Once a buffer block

is specified for a unit, that same block is always used and it cannot be

changed and it need not even be specified after the initial entrance.

The line length is remembered for each unit and is reset when switching

back to that unit. However it may be changed at anytime. (When changing

the line length, the buffer addresses or at least the parentheses, must

be written in the ENTER statement.)

The concept of one line completely replaces the concept of one

80 column card when the line length is changed. This means that the end

of the format means start a new line, a format type Ik means start a new

line, the end of a subgroup means start a new line, and it means that the

card counter, when used, will print at the end of the line whenever the

printing stops before the card counter field is reached. These concepts,

except for card counter printing, are also true when reading variable

length lines.

It is permissible to switch to the same unit that is currently

being used. A maximum of six tape units (besides tape 8 "card" output)

J- t~l £/*— -*• Ml li w i_» v.. v^. .

When using unit 8, it is not necessary to specify a buffer

block. If none is specified, the standard buffer (at QNF6O-QNL27) is

used. (This is also used for "switch 35" output.)

ATJ +QT.O TJ-I-T+n"rirr -? o narit.v checked and confiiTTpncv is ^alned

by "double-buffering". ONL30-ONLL7 is used as the extra 200 word buffer.

Tape trunk B is used to do all of the writing.

91

The end of a reel is checked for and when reached, the END

REEL" sentinel is written, the tape rewound and the computer halts at

080 with the unit no. in the B address of the halt order. Mounting a

new tape (or changing the proper tape switch) and initiating is all that

is required of the operator to continue writing on a new reel.

Tmrmrrn/ cfi.im rir\\fv
JÜLMXEin^ OEiX. UU)-p

This SET.CO subroutine (actually part of SET.TO) allows switch-

ing from tape output to card output (or tape 8 if switch 35 is up). It

resets the line length to 80. It does nothing if the computer is already-

set for "card" output.

ENTER(EBR.TO)u)r <jo

This subroutine (actually part of SET.TO) -will empty the buffer

block used for unit u by writing a partial block on the tape. If r is

omitted or zero and u is not 8, it will also write a file mark, write

an 8 word END TAPE block, another file mark and rewind the tape. If

r is not zero or if u is 8 and tape 8 is being used for "card" output

it will only write the partial block.

EBR.TO may be used with the current unit, any previously used

unit or if the unit has never been used, it does nothing. It also does

nothing if the tape has just been rewound by this subroutine. It may

be used with u = 8(or 0) to empty the "switch 35" tape buffer and it

will do so only when switch 35 is up. It will not rewind tape 8 when

 J J "U -)C J„ ,-,-^ „^ «„ -*,,} ~\ r-, ,-. r* /-,-P 4-VlQ -VI nCQrl ÖWJ.OCU yj lü U.JJ iCgaiUiCDD ui UJ-H; -i- LIC><^..

Normally, the programmer does not need to use EBR.TO as the

N.PROB routine will empty the buffers and rewind all of the units that

have been used by SET.TO. (it does this by actually using the EBR.TO sub-

routine.) If C.PROB is actually used instead of N.PROB, the buffers

are emptied but the tapes are not rewound. Any N.PROB (or C.PROB)

error prints will appear on the tape (or "cards") that was being used

at the time N.PROB (or C.PROB) was entered. If the card deck version

of N.PROB is used by the BRLESC operator, the error prints will be on

cards and the tape buffers will nut be emptied and the tapes will not

be rewound.

Once EBR.TO has been used, the buffer block may oe usea ior

other storage. However, if more output on that unit is desired, the first

word must be set to contain the sexadecimal constant (ZLNl). (This is an

ignore character and a 1 character.)

Variable Length Line Control Characters:

mUrt OTPin mr\ «^"U-W/MI+I* -m* a -V->A 4-QTI^ ft r»Q T»rl /*m+YYn + V\ f» + V» T.7-y»-i +• o
±LVZ OJJJJL*J-W L3UUJ.UU0111C O.I1U. ua^t v_/ uu.1 u. uu.uf'uu uuun nx -L. uv-

variable line control characters as described for the off-line printer

system. Thus each line has a vertical control character at its beginning

that controls the amount the paper is shifted and a "^" end-of-line

character at its end.

J.11C VCX OJ.<vCI>X V-Ull LrJ. *->-!_ v-i it^l u>u uv-i J-fcj iiv u J-'J. J_XX vv.v*. • JL. uu x xguwiuw v

four bits selects a paper tape channel and the printer carriage moves the

paper until it finds a hole in the paper tape in the selected channel.

It is extremel*r desirable that ever,rons uses the same standard 'na'ner

tape which defines the control characters in the following manner:

D-RKPRTPTTOTI

1 Single space and start a new page after oO lines.

2 Skip to next even numbered paper line and start

a new page after line 62 has been printed.

\,xt> auuuie ufuuxiig XJ. uacu axx uiic oxiuc. j

3 Single space continuous.

k Skip to next l/5 page. (12 lines per group.)

y ^«^j.^ „w **-*.....*, —^ . x—0~ . \ —• —— jr D JT - /

6 Skip to next 1/3 page. (20 lines per group.)

7 Skip to next l/2 page. (30 lines per group.)

8 Start new page at line 3-

LIMIIIL'T)/ cn?m Trn\«\n oL

SET.VC is a subroutine that allows the programmer to specify

the vertical control character for the next line and also the succeeding

lines. The n address itself is the control character for the next line

93

and the s address is the control character for all succeeding lines -

(until SET.VC is used again.) If either (or both) address in blank

(or zero), it is ignored and the previous character remains in effect.

The n character is used for the next t&'ne output line regardless of

whether it is tape 8 "card" output or SET.TO tape output.

Both n and s are initially set to 1 (single space).

To use the selective printing option available on the Analex

system, the decimal or sexadecimal equivalent of the desired six bit

code may be written for both n and s.

Example: S^TER ^SET.VC; 8 jcr/c» means start a new page with the next line

and double space the succeeding lines.

BRLESC Compiler Tape Output:

All compiler output (error prints, header cards, dictionary and

sexadecimal code) may be put on tape 8 either by the computer operator

putting switch 35 up or by a SET.TO $ statement appearing in the program

being compiled. (Note the absence of ENTER in front of SET.TO1.) All

compiler output may be put on another tape unit u by writing the statement

SET.TO(u)$ in the program being compiled. Note that SET.TC$ and SET,TO(u)#

statement (without ENTER) set the computer for tape output at the time

they are being recognized by the compiler and not when encountered in the

runnine nroeram. They both al-^o ^au-^e +he rnnniner crosram 'card" outout

to be put on the same tape unit. However SET.TO(u)/b may actually be

changed to card output by using ENTER(SET.CO)# in the program if u / 8.

All compiler tape output is written as variable length lines

with a new page begun at the first line of output and at the header cards

in front of the Problem output•

•DTU-iCiuU '•rape .rxupixng uuu-ruu.pj.iic;

BRLESC has a subroutine, with eight entrance names, that can

be used to produce magnetic tape for off-line plotting of data. The

names of the subroutine entrances and the lists of addresses used with

them are listed below without explanation. See BRL Technical Note No.

1551 for a detailed description of this subroutine,

94

EUH.D)h)f)a)an)X)Y)n)ix)iy)c)XMIN)XHAX)^^ #

PLOT.A)h)AX)AT)XMIN)XiyiAX)YMIN)YMAX)an $

PLOT,T)h)Hr)SY)p)an)X)Y $

ENDPLO)b)h #

FIX.SC)Dl)n)i_).5IN)DS)lMIN)rMAX)DEIiD <f>

nrw ar^TYi \v*\-? ^ qT^T\c^TWTl\^•AY^TYETT) <£
\J\JX* • ^J\J j ±sj- j LI / -i-_ y • y -1-11 ^U/M-IJ^I /•^***"'-/-" • •• • • /-

Additional information on most of the above subroutines may-

be obtained from their individual descriptions that are available.

XI. Error Prints

Both POFAST translators do a limited amount of checking for

programming or key punching errors. They check for only very simple

types of errors and this is only a very small percentage of all possible

errors. The programmer must not assume that his program is correct

.iust because it does not cause an error print. If the translator does

find an error, it prints out some information about the type and location

of the error. The OKDVAC prints two words on the teletypewriter and

BRLESC prints two alphanumeric cards. When a program contains an error

that causes an error print, the translators will always print the

dictionary and will not allow the program to be run.

When the translators find an error, the rest of the card that

contains the error is not translated. If the error is found at the end

of a cardj the translators will usually skip the entire next card. There-

fore it is possible that the translators will not find all of the errors

in just one run.

The dictionary should be used to help locate errors. It

should be checked for strange names that will usually be marked with a

U and for the desired storage assignment. The dictionary does not need

to be checked or printed each time a problem is translated, but it should

be checked at least once for a given problem.

95

/\ ATiTw r A rt in „ "D : ^ 4- ^ •

The ORDVAC prints two words on the teletypewriter that have

the following form:

Type 0 0m 0 Jtoent^ Card Ho.

where Type is the two digit number listed below; m is the sexadecimal

digit (O to L) that indicates the five digit field on the card in which

the error was found: and Ident. is the decimal part of columns 77-80

that were on the card that contains the error. (The error might be at

the end of the previous card if m is zero.) The second word printed is

the actual sexadecimal count of the number of cards that have been

processed. It is independent of the identification in columns 77-80 and

is strictly a count of the number of cards that have been "read" at the

time of the error print. It starts at one and if a five is printed and

m ^ 0, the error is probably on the fifth card in the program.

Below is a list of the ORDVAC type numbers with a brief

description of the probable cause for the error print.

TYPE PROBABLE CAUSE

01 Illegal order type in assembly language.

02 Illegal character.

03 More than one comma in a non-array address.

0k Illegal character in a decimal number.

06 Illegal character in a sexadecimal word or address.

07 Illegal exponentiation.

08 IF statement has ABS in front of an equality conditional

expression.

10 Symbol after ")IS" is neither + nor - in an IF statement.

11 Illegal name preceding a conditional expression in an IF

statement.

12 Improper name at the beginning of a formula or statement.

13 IN does not appear in a COUNT statement.

Ill No $ at end of COUNT, MOVE and CLEAR.

15 No j> at end of a MACH assembly order.

96

PROBABLE CAUSE

16 Attempted to reassign an address.

17 Referenced a "block before it was defined.

19 Format address is indexed in a READ, PRINT or PUNCH statement.

20 Increment for address advance or count in a COUNT, CLEAR, MOVE,

READ or PRINT statement has an indexed symbolic primary address,

21 Fixed fractional number exceeds one.

22 The address on ITTS or NOS. card is not a machine address.

23 The GOTO address on the END card is not assigned.

24 An address has a symbolic increment.

25 Name of the subroutine is indexed in an ENTER statement.

26 Address on LAST card becomes assigned before the END card.

50 Illegal arithmetic on left of - character in arithmetic formula,

60 Symbolic name used for no. of blanks before > in a PRINT

statement.

,6l No > on the same card after a < in a PRINT statement.

Fl Dictionary is full. (About 3ßO names.)

F2 The SYN backlog table is full. (28 names.)

FJ The drum is full, (Program is too long. About 3000 words.)

Fk The SYN table is full of unassigned addresses. (6k names.)

jk 040 Exceeds drum capacity while reading cards.

NO FNJ No END card.

B. BRLESC Error Prints.

BRLESC prints two alphanumeric cards. The first one

is of the following form:

ERROR TVoe Error word m Ident. Rest of Pm cols. 11-20 Prob. card
 y * 1 _____ _______________ --- •"•

where Type is the two character number listed below; Error word is a ten

character word that attempts to describe the type of errorj m is a digit

(0 - 7) that indicates the ten character field in which the error was

found; Ident. is columns 77 - 80 of the card that contains the error (or

91

of the next card); "Rest of Pm" is the characters that have not been used

from the rath field on the card (the error was found at the leading character

printed here); Columns 11-20 from the card are printed; and "Prob, card" is

the first 30 columns from the PROB card that was at the beginning of the

program.

The second card printed is the acutal card that contains

the error or when m = 0, it is probably the card following the one that had

the error.

Below is a list of the BP.LESC type numbers and error

words with a brief description of the probable cause for the error print.

PROBABLE CAUSE

Illegal order type or statement.

Illegal character.

Two commas in a non-array address.

A decimal number has illegal character.

A non-sexadecimal character in a sexadecimal word

or address.

Illegal exponentiation.

IF statement has ABS in front of an eouality con-

ditional expression.

Symbol after ")IS" in IF statement is neither

+ or -.

Illegal "parameter" in front of conditional

expression in IF statement.

A COUNT Statement has a variable increment without

using IN,

No $ at end of COUNT statement.

TYPE ERROR WORD

01 ILL. O.T.

02 TT T HTTUD X.UÜ. UHHT1

03 2 COMMAS

ok DEC NO NO.

06 NOT SEXA.

07 ILL. **

nP, ABS IN IF :

10 NOT IS+OR-

11 ILL PAR IF

13 COUNT NOIN

Ik COUNT NO io

ik CL MV NO £

NO $ AS,

16 SYMB. RESN

No io at end of CLEAR or MOVE statement.

No $ at end of an Assembly order.

Attempted to reassign a symbolic address.

98

TYPE ERROR WORD

17 BLOC REF.

21 X NO. OVER

22 NO MAC ADD

23 END SYMB.

24 SYM. INC

26 LAST SYMB.

30 ILL. LOG.

31 FORM. BIG

32 ILL. OP. c

33 INI. SORT

34 NO GOTO IF

35 ILL. < OR >

36 WITHIN N0=

37 NO <t> SI GO

38 NO £ SI II

39 INDX SY IC

40 HALT NO it

41 GOTO IF <f>

42 ILL. O.T.

43 ILL. C 10

PROBABLE CAUSE

Referenced a "block before it was defined.

A fixed pt. fraction exceeds sixteen.

No machine address on FTTS or NOS. card.

The GOTO address on the END card is not assigned.

An address has a symbolic increment.

An address on a LAST card becomes assigned before

the END card.

Improper location field.

Formula is too big; has more than 31 operations

grouped from the right.

Illegal operation where c is the illegal symbol.

Integer square root is not allowed.

An IF statement without a GOTO address.

Illegal inequality symbol, (not in an IF statement.)

WITHIN used following an inequality conditional

expression.

A GOTO in a SET or INC statement is not at the

end of the statement.

A SI,II,SIJ, etc. assembly order has more than

three addresses.

A symbolic increment for COUNT, CLEAR, etc. is

also indexed.

Have more than three addresses in a HALT order.

A GOTO statement is not followed by IF or %

The order type name on an O.T. card is not

symbolic.

Illegal C address on input-output order

99

TYPE ERROR WORD PROBABLE CAUSE

h5 ILL.= Illegal arithmetic on left of = character in

40 ILL. SH 1 h'T

'JO I.I 1 l|IU 1 l\l
C-±\. n 0.-L I I .I.J J

50 raDEX > 63
i 1 LOG = 000

52 BLOC = 000

55 NO PROB C.

UU
•CnrnvTm m/»* -

61 PRINT NO >

Illegal shift code character or an illegal fl. pt.

shift.

M.--.T-»,, 0_ T_ „ _„_ "I L _• _T_1 ., , . . ,_
L-IV± c uiicta uue relation preceaea wixniK in J_t' s~caT,e-

ment.

Used more than 5k index registers.

Location counter is set to 000.

A "block is assigned to 000.

No PROBlem card.

oymuOxic name for numuer o± uxarucs ue±ore > in a

PRINT statement.

No > on the same card after a < in a PRINT statement

(CO T ("IP ^ A/3,3 Dv.^rfT.gm -; c* c~>±^vciA d 4- -f-^^\ lovirfQ d »-^ Q/^/^-^^c-r» " A ri ri " i_i£_ -U\y\y • *^ nuu • x j- w^j. Guiu 10 o u^x ^KJL CJ. U OW-' xai g,c: o.±i O.UAJ..L coo • r^ixtx .

is largest allowable program address and changes

with memory size. For 52K, it is 9-LLL.

Ra-non to^ f AT 1 nvoq nn +ptrmri>,flvv -hpmo nrn't V

The dictionary is full, (about 7000 names)

The SYN backlog table is full. (64 names)

The SYN table is full. (288 names)

The constant pool is full. (352 constants)

Machine error on temporary tape. (Columns 69-80

has alphabetic error bits or a name that came from

tape but is not in the dictionary.

Machine error.

£-1 T>aw 7 Tin

Fl DICT. FULL

F2 BACKLOG

TP)l QVT\T rpA"RT.TT

F5 N0S. FULL

ERROR TAPE 7

ME MACH. ERROR

XII. Run Error Prints:

Many of the F0RAST subroutines include checks for error

conditions at run time. If a subroutine finds an error condition, it

causes an error print. After the print, the computer halts unless

"ERROR" was used as a location in the symbolic program. If ERROR was

used, then the program continues running at the ERROR location. (See

section XIII;A).

1UU

A. ORDVAC:

The ORDVAC run error print routine prints two sexa-

decimal words on the teletypewriter. The first seven sexadecimal digits

of the first word serve as a code number to identify the subroutine and

the last three digits of the first word are the return address for the

entry that caused the error condition. The second word is generally

the argument or some other word that indicates the type of trouble.

ORDVAC Run Error List:

(X and Y represent argume nts and RA is return address)

ERROR WORD

RA_

SUBROUTINE REASON

X < 0

SECOND WORD

K6OI2 NO _ SQRT X

060lk NO RA LOG or L0G10 X < 0 X

K6013 NO _ RA_ ES* x > 87.3365^ Y

26010 NO _ RA_ ARCSIN or ARCCOS

or ARCSC

JXJ>1 + 2"^ |X|

KbOlO NO __ SA- SIN |x|/2n> 250 - 1 X/2n

K6011 NO _ HA- COS or SINCOS |x|/2*> 230 - 1 X/2n

12000 NO RA POWER X = 0 and y = 0 -Y

12000 KO _ RA

7K0U O1 _RA

O8OOI NO _ 5A.
10000 NO RA

7I+SNI NO RA

LN FA NO F6K

ARTAN

TAN or COT or

SEC or CSC

SINE" or COSH

CVFTOI

CVFTQX

SY.SNE or SY.INV

or S.N.E, or

MÄT.INV.

READ or PRINT

or PUNCH

or X < 0 and Y

not an integei

X = Y = 0

IResult I = 00

|Result| = 00

|X|> 23° - 1

Exp. of X > 2

ith diagonal is

0

Unused format

type. (FA is

format address)

or input no. is

too big.

X

Zero

X

Zero

X

Exp. - 2

(i-l)2"59

3N _ I _ Kk _ NA_

(NA,I is add. of

next no.)

101

ERROR WORD

88 NO RA

SUBROUTINE

D.D.IN

REASON

Either X is too

far outside

is too small.

SECOND WORD

Xd. ÜA ÖJ.N S. IlMTJi Error limit is x\6x. ciiu.

(SA is store too small or last step

add.) range too large.

After the teletype error print, the ORDVAC also prints

"SUB EREOR" Then "i"*" ERROR MS nnt. n.wl. if. hal t.s at

OLNY and if ERROR was used, it continues to run the program "by going to

the location assigned to ERROR without stopping.

Since some subroutines use other subroutines, it is

possible that the return address (RA) is a location in some subroutine

rather than in the FORAST program.

B. BRLESC

The BRLESC run error print routine prints two cards,

an alphabetic card and a binary card that contain the same information.

The alphabetic card printed has the following form:

RUN ERROR Error word PROB.or Date Cols. ii-q-O of PROB card LE(dec.) No.

where "Error word" is an alphabetic word that identifies the subroutine

and tries to indicate the type of trouble (see list below); LE is the

location of the entry to the subroutine (it is printed in decimal here,

it can be read in sexadecimal on the binary card): and "No." is a decimal

fl. pt. or integer number that is usually the argument that caused the

error condition.

102

The binary card printed by BRLESC for a run error

contains the same information as above but in a different sequence.

The 12 row of the card (only columns 1-68 are used) contains LE, the

11 row contains "No." and the 0 to 5 rows contain the same alphabetic

words that are printed in columns 1 - 60 of the alphabetic card described

above. (The 1 row contains the "Error word".)

(X and Y represent arguments;

jmRQR WORD

LOG X NEC*.

EXP BIG X

ARPRTN 1 +

LOG or L0G10

EXP

ARCSIN or ARCCOS

X < 0

X> 35^.89

|X| >1 + 2-k9

Tin,

X/Loge 2

SINCOS N S

TAN DIV. 0

kJ-LiYLl JJO-U

CVFTOI BIG

S.INTEGRAT

Ü1WU.MAT

SIN or COS or

SINCOS

TAN or COT or SEC

or CSC

SINE or COSH

CVTTOI

OVFTOX

S.INTE

X|/2n> 16 13 X/2n

or S.N.E. or

MAT.INV

X = 0 and Y < 0 Zero

| Result| = oo X

1 Re suit 1 = co Zero

|X| >16U X

Ixl >l6 or X< -16 X

UlITUX" J.J.U1J. U L.UU
Bo! a

small or range too last step,

large.

ith diagonal is 0 (i-l)2

Either X is too

far outside table

or table is too

small.

-60

103

ERROR WORD SUBROUTINE REASON NO.

CTRT TT ~> £

SET.TI-BUL

PAR.ERRORu

T.O. u PE

SET. TO > 6

TO.BAD BUF

E.P. NO HND

P.F. NO HND

P.A. NO HND
P TV TOD TTMT)

P.D. NO HND

P. S. > 1+ HND

CTET rpT

SET.TI

SET.TI

SET. TO

SET.TO

SET.TO

END PLOT

PLOT.F

PLOT.A

PLOT.T

PLOT.D

PLOT.S

TTaorl mr^-i-»o +V1QT1 f~\

tape units.

Improper buffer

RBpni f i f^at.i on . —j- ^j .

Parity error on

unit u.

Parity error on

unit u.

Used more than 6

tape units.

Improper buffer

specification.

Line length speci-

fied was > I60.

Improper tape

..^ -? 4- «~
Ulli U 1±U •

Improper tape unit no.

Improper tape unit no.

New Tape no.

Not significant.

80 column error line

is printed before

error print.

Total no. of tape

write errors.

Zero.

Zero.

Tape unit no.

Tape unit no.

Tape unit no.

Tm'nrn'npT' -hftrt^ nni+. nn _ TTart^ linn-h nn .

r. 0. wu nur JMJJX. 0

P.A. DELTA PLOT.A

improper tape unit no.

Used more than k

tape s,

No buffer specified

AX = 0 or AT = 0

Tape unit no.

Tape unit no.

Tape unit no.

Tape unit no.

IOU

BRLESC halts at 0N40 after an error print if ERROR

Tf ERROR wo« xsed. it goes to that location without-

stopping and continues running the program.

The following ERLESG run error ^rints are obtained

only when a problem goes to the N.PEOB subroutine when it is finished.

(A program that stops by reading more cards will go to N.PROB if it

has a PRGB card at the end of its data,) These error prints do not
 _i ten you wnere xne error occurred, tnere is nu

Section XIIIjB)

LE u Ul" HUi pXJ.Ill.CU. I dee

ittUCUK WUttU

m?.a SORT

FLT DIV 0

FLT OV.FL.

SEX OV.FL,

DX OV.FL.

MX OV.FL.

ASX OV.FL.

TAPE ERR.A

TAPE ERR.B

iDUBftUUTJ-rtUi _____

N.PROB Square root of negative number.

N.PROB Fl. pt. divide by zero.
-138-

N.FROB Fl. pt. exponent overflow. (X > 16*)

N.PROB Fixed pt. shift overflow.

N.PROB Fixed pt. divide overflow.

N.PROB Fixed pt. mult, overflow.

N.PROB "Fixed pt. add or subtract overflow.

Tape trunk A parity error light is on.

Tape trunk B parity error light is on.

utse ui oujiie Q^ctiai ua_e&.

ERROR

The name ERROR may be used by the programmer to specify

a location to go to when a subroutine finds an error condition during run

time. ^See Section XII.; The computer halts after a run error print if

ERROR has not been used (or if it has been used but not assigned an address

105

by the programmer). If ERROR is used (in a location field or otherwise

assigned "by the programmer), then the program continues running without

stopping from that location after a run error print.

If all of the data for one "case" of a problem is

read before it can encounter any error prints (other than READ error

prints), then it is wise to use ERROR as the location for starting a

new case. This allows a program to run or at least attempt to run all

of the cases rather than stopping at the first case that won't run.

The name N.PROB represents "next problem" and a

program should go there whenever it knows that it is finished running,

A GOTO (N.FROB)^b statement should be used instead of a KALT statement

in this situation.

On ORDVAC, N.PROB is assigned to OLNT and is nothing

more than a standard halt order. It has the advantage that the tech-

nician running the program knows that the problem ran to an expected

halt. If a program halts elsewhere, he isn't sure whether it was ex=

pected or not.

On BRLESC, FORAST allows several programs to be

stacked on tape and run consecutively and a GOTO (N.PROB) means

exactly that, N.PROB is actually a subroutine on BRLESC that checks

for overflow conditions (See page 10 5 for overflow prints), empties

tape output buffers, rewinds output tapes, and halts at W40. When

programs are stacked on tape, they-must be separated by file marks

because the compiler arv/ays moves tne imput tape to a file mark

before beginning compilation.

lob

The name C.PRQB means "compile next problem" and this

allows a programmer to compile a problem, run it, compile another problem,

run it, etc. It essentially allows a programmer to stack several problems

together and run them as one problem. The deck will appear to be only

one problem to the computer operator, the computer will not halt between

each compilation and all of the time will be charged to one problem

number.

Either ENTER or GOTO may be used to go to C.PROB

which is really a subroutine that performs the duties of N.PROB except

for rewinding the output tapes and halting.

When using C.PROB- each program must have a PROB card

at the end of its data. C.PROB should never be used unless there

actually is another program stacked behind the one in which it is used.

The last problem in such a stack of programs should go to N.PROB.

If while reading data, the PROB card is read, transfer

to C.PROB is done if C.PROB was mentioned anywhere in the program.

However after a "RUN ERROR" print, control always goes to N.PROB and

not C.PROB unless ERROR is used to specify where it should go.

D. M.DUMP

The name M.DUMP is designed for used as a code checking

aid. It may be used as a location to go to after a program comes to an

unexpected halt. If the person running a program manually transfers to

006 on ORDVAC or 058 on BRLESC when an unexpected halt occurs, (as he

should), then the program will jump to and do the code at M.DUMP and

this code can be used to print some information that might be useful

in determining the reason for the unexpected halt. As the name implies

a portion of the memory may be "dumped" to allow inspection by the pro-

grammer. Inasmuch as 006 (or 058) will execute a GOTO(N.PROB) order

if no M.DUMP occures, the code at M.DUMP should always end with a GOTO

(N.PR0B)$ statement.

107

XIV. Machine Assembly Language.

Each FORAST translator program allows Its own machine

assembly language to be used and assembly orders may be interspersed

with formulas and statements. It is also possible to include both

urujVAU ana DJKJ iCiDU assemciy uruei'H xn bue same yrugreua xn a. [ua.iu.icr ouau

causes each machine to ignore the assembly orders that were intended

for the other machine. (This is done by using MACH cards on ORDVAC, as
 ~"l — J 3 -1 "lrt, , 3 T T, ~ ~-? ~»-. -,' ~ ~ ^«-s~U ~n ~*A ^-,-P "DDT tPOA f-i r. ~ ~•"U 1 -. ^ /^ -«/3 „-*,,-.
tSAj-U-tlXHtiU. ueiuw a.uu uy ucgxixuxixg, cauu cam ux X>£IXIEJOV/ aoöciuuj.^ UIUCIü

with a statement of "BRLESC <f>".)

Any order type or address in an assembly order may be

either symbolic, sexadecimal or decimal. Actual numbers, rather than

the address of a number, may be written in place of an address in

titpbtsmuxy uruers u,y ^Jicueuxiig, OJXC UUUIUCI. mou oi-ie o^muui-. my ^.yir"^ «-"x

number allowed in DEC (See page 56) may be written after the *. In

the absence of F or X at the beginning of the number, the type of

On ORDVAC, numbers in floating point orders are converted to floating

point (unless X,I,B, or D is used) and numbers in fixed point orders are

converted to fixed point fractions if they have a decimal point and to

integers if they do not have a decimal point. On BRLESC arithmetic

orders (except shift), the actual F or X parameter bit in the order

determines the tirne of conversion. On non-arithmetic orders, the MODE

determines the conversion. (Note that on BRLESC the MODE actually

determines the F or X parameter bit on arithmetic orders unless F or X

is written as '"art of the order type, i

A. ORDVAC Assembly Language.

ORDVAC assemble orders mav be written one per card

by writing the order type in columns 7-10 and the address in columns

11-76 or several may be written on the same card by using MACH in

columns 7-10 and using columns 11-76 to write any number of assembly

orders. BRLESC will ignore MACH cards but will attempt to translate the

one order per card order improperly. Hence MACH cards should be used

if the program is to be run on both machines.

108

from the order type by a (and each order is separated from the next one

by $>. i<4> causes the rest of the card to "be ignored. The enclosing)

after each address is optional and the entire address m&v be omitted.

The address In an order may be indexed (by using a

comma) and causes the translator to code an index order before coding

the order that contains the indexed address. The index order may also

be written separately.

Full word orders (drum and magnetic tape) must be

written as two half words and the location field must be used to insure

that both halves will be located in the same word. Note that the rioht

address of full word orders cannot be indexed.

A blank ^or omitted^ address is the same as 000 except

on the A series of orders. A blank address on any of the A orders is

replaced by the address of the next word (SELF + l).

U or GOTO and C or C+ transfer of control orders will

be changed by the translator to transfer control to the right side if

the •n-rirna'rv address in the order is the location of a rieht order. Thus

GOTO \,3'^-)T> will transfer to 3-i regardless of whether it is a left or

right order. All absolute decimal, sexadecimal, or blank addresses are

considered to be left locations for this purpose. SELF is also a left

The OKDVAC translator automatically leaves a blank half word

when necessary so that DEC, SEXA, FORM, or DEC = constants will be

stored in full words. When the translator needs to skip a half word

before it codes the next order, it automatically inserts a Zx(SELF + l)

order«

Special processing is done on the address of the "tape select"

(TS) order. The address may be written as R,W, MF," MB, REW, or UWW followed

by a dashand an absolute tape unit number. The move orders (MF and MB)

may contain a "second address" that it an absolute number of the number

109

of blocks the tape should move. For example, TS(MB-l)3# instructs

tape unit 1 to move backward 3 blocks. Instead of one of these

special symbolic names, the address may be an ordinary symbolic or

absolute address.

The table of all symbolic order types for ORDVAC is

listed in Appendix A. See [l] for a complete description of the

ORDVAC and its instruction repertoire.

If an ORDVAC symbolic order type is written in

columns 7-10, it must not contain any blank columns between any

two characters of the order type.

A sexadecimal order type on ORDVAC sets all eight

bits, including the spare bit. However a decimal order type sets

only the leading six bits and does not affect the floating point bit

or spare bit.

Examples of ORDVAC Assembly Orders:

T"
ft

(+) X,I

M B,I $ Comment

U lks2

MACH +(A)£(+)(X,I)£M(B,I^ COMMEKT

MACH F+(T)^F/(V,J5)%A-^FM(R,J5)^

IiEFT MACH DR(Ao)# 06Ml8.2)#

pitwsn RS()$£ MACH cards are ignored on

BRLESC.

B= BRLESC Assembly Language.

BRLESC assembly orders may be interspersed at will

with arithmetic formulas and other statements. If the program will

not be run on ORDVAC, the order type of the first assembly order on

110

— —^-- »-"j *>c J-" v-uxuiiuio i - j-u. n one jjxugx-suii win De run on UKDVAU,

the statement "BRLESC #" should precede the first assembly order on

each card.

Since BRLESC is a three address computer, the general

form of assembly orders should be O.T. (AUBHCV* where (fL-r+rr «)

is optional. It is permissible to write just O.T.70 or O.T. (A;7> or

O.T.(A)(B)# where A and B are used to indicate the first and second

addresses of a BRLESC order. However there are a few exceptions where

it is not necessary to write all three addresses in order to have one

used as a C address. SIJ or SETJ and IIJ or INCJ always use the

last address as the C address. A HALT order (which is also a state-

ment, (See page 36) uses the last address as a C address if there is

more than one address written. If one address or no address is written

in a HALT order, the C address is set to (SELF + l) automatically. GOTO

is permitted as an assembly order that has only one address.

The BRLESC symbolic order^types are listed in Appendix

D ttXUilg W1U1 Uiic ojrmuwx-L^- ±KX± cm», \s&± 0 • u^\^

BRLESC instruction repertoire. The F or X (floating or fixed pt. ;

•parameter may be written either before or after the order type while

all other parameters must be written after the order type but may be

written in any sequence. If F or X (or U or N or R) is not specified

in a symbolic arithmetic order (except shift), the order will be set

to do the MODE (See pageöQ) arithmetic. Shift orders are always fixed

point unless they are specified explicitly as floating point. The U

or N parameter also sets the F parameter and R also sets the X parameter.

If the MODE is FU (unnormalized fl. pt.), the U parameter is not set

unless the order is actually a floating point order. Any symbolic order

type begun in columns 7 - 10 must not continue into column 11. No

symbolic order type may have more than six consecutive letters and/or

decimal digits. (A minus sign may be inserted in front of the para-

meters.)

111

The entire order type \S bits; may be specified in

sexadecimal or decimal (no signs allowed). (MODE does not affect sexa-

decimal or decimal order types.) A symbolic order type followed by a

decimal or sexadecimal ^with or without a leading zero; parameter is

allowed only on B,CB,CNB or CN, TP and IT orders. (Symbolic para-

meters are not allowed on these orders). For all other orders, the

order type and parameter must be all symbolic or all decimal or sexa-

decimal.

Symbolic parameters must not be written without a

symbolic order type. If a blank or zero order type is desired, a Z

may be written for it and may be followed by any of the symbolic para-

meters .

Order types of CEQ and CNEO may be used instead of

CEO and CNE6 respectively.

Key words for the standard program input routine

may be written by writing an order type of KEYi where i is a decimal

digit (0,1,2,3) that defines the type of key word. Key words are only

required when a program is to be punched for use as a subroutine. Key

words do not affect the storing or translation of a program and mean

nothing unless a B.SUBR print is performed.

There are four BRLESC orders that have addresses that

are not used as memory addresses. They are: \lj B address of SK,

(2) B address of JA and JNA, (3) B address of JC and JNC, (k) C address

of 10. FORAST allows these special "addresses" to be written in a

oycu-Ld-L «ay.

The B address of a shift order is a shift code rather

than an address. The type of shift may be specified symbolically by

using the desired letters listed in Appendix B for the shift code.

These letters may be followed by the magnitude of the shift in decimal

112

or sexadecimal and the address may be indexed in the normal way. The

direction of shift should immediately precede the amount of shift.

Note that R has a double meaning. It means round only if it is to the

left of the direction \li or R or + or - ; of shift, otherwise it indi-

cates a right shift. The address assigned to a symbolic name may be

used for the type and amount of shift by preceding it with "S/".

The B address of a JA or JNA order is used as a six bit character

rather than as a memory address. Therefore FORAST allows a single

character to be written and its six bit representation used as the B

address of a JA or JNA order. If there is a (at the beginning of this

address, it is ignored but only one (will be ignored. If the "address"

is a special character or a singje leo^er or aigio, XoS six uio repre-

sentation will be used. If the "address" has more than one character

and is decimal or sexadecimal, its rightmost six bits will be used. If

d DVUlUUiJ.^ I HrVILT lido 1ÜWJ. _ ULJ.OI.LJ. V;iH- * -• "-'• • UiV^. UV_ J. yjj. 0.-L. JL U J-.U_A.kJ U.J.J. i.ll^t ^U1>-11 KJ y

the assigned address will be used except for the word BLANK which may

be used to indicate a zero address. (The six bit representation of the

blank character is six zero bits). Note that it is not possible to

leave a blank address here as the ; would be used as the character to

be represented in the address. Note also that a single zero character

will "ive a binare address of 11 0000 (the zero character) while 00

^two zeros; will give an all zero address and represents a "blank'

character. It is permissible to use the symbol * = ' to separate the

A and B addresses in a JA or JNA order.

The B address of a JC or JNC order may be written as five sexa-

decimal characters or the equivalent decimal number. If a symbolic

name is used, then It is used in the normal way and sets only the pri-

mary address and the index bits must be specified in the normal way.

113

The C address of an input-output order can be written in a

special way. This address is used to specify the type of input-output

(card, tape, drum or flexowriter) and other information such as tape

unit, drum channel, read or write, etc. Appendix C lists the symbolic

names that can be used to specify the C address on input-output orders.

(These special symbols must be in the third address of the order and

not in the first or second address.) The order type used (CARD; TAPE;

DRUM; FLEX) also sets the C address (the last sexadecimal) for reading

(except FLEX sets for writing) from that equipment. If the order type

specifies the equipment, then the C address need specify only the ad-

ditional information that is needed and R(or READ) or W(or WRITE) may

be used to specify the direction of information flow for that equip-

ment, (if equipment is specified both places, the equipment specified

in the C address will be used.) An order type of ZERO sets the C

address to 0807 for clearing the memory. (CLEARM may also be used in

the C address for the same purpose.) The entire 20 bit C address may

also be specified by one sexadecimal address.

The addresses in the SI, SIJ or SETJ orders may be written in the

standard way or in the same manner as followed in the SET statement.

Therefore Sl(l=3)j=0 $ is the same order as Sl(3,l)0,J %. The address-

es in the II, IIJ or INCJ orders may be written in the standard way or

in the same manner as allowed in the INC statement. Therefore Il(l=I+l)

J = J + k)<$> is the same order as Il(l,l)(U,j)#. Note that these

assembly orders must not have more than three addresses.

A decimal number may be written in place of an address by preceding

the number with an *. Any type of number allowed in DEC may be written.

A sexadecimal constant may be written in place of an address by pre-

ceding it with a / or **. Any type of constant allowed in SEXA may be

written.

114

Addresses that are either omitted from the end of an

assembly order or are left blank by the use of parentheses are set to

00000. Each address should be followed by) and the following (is

optional.

Some examples of BRLESC assembly orders are:

LOC. (XT;

FA (A)B+3)Ti# FMA(X,I)0)F3,J+2T&

TPS(3.2)MASK)5.7)#AX(Q)*13)<$

SH(R3)BTCR20)R3# C-X(SI)*O)8.I$

CB8(W, I-2)/OLZ)SELF-^ COMMENT

BRLESC # TAPE ())WFMR-3A#

The following instructions have been added to BRLESC

and the F0RA.ST compiler to facilitate the addressing of a large memory.

It is not necessary to use these instructions in writing normal FORAST

programs as the compiler automatically inserts the necessary instructions

required for large addresses. However, in subroutines and some F0RÄ.ST

programs, it will be necessary to use some of the following instructions:

1 o TTT.

14 JL

15 JSL

11 SIL ao<(20 bits) -» (.b) and cy - (ß)(index

address.)

ao/ + ("h^ -. (~h) anfl cy + (&} -. (R}.

Jump to cy (20 bit address).

Jump to cy. Also A - (2); B - (3) and

(NI) -(1)

05 JS Same as JSL except jump to C instead of

cy.

l60 I Leading k bits of a are zero, the next

12 bits are the index address for the

first address of the next order that is

done as specified in cy, the next 12

xxp

SEXA. SYMBOLIC COMPUTER DESCRIPTION
"bits are the index address for the second

address of the next order and the next

12 hits are the index address for the

third address of the next order, cy is

168

17

19

IX

IS

IF

T.Y

the next order and that order uses its

set; D{3^ and cy as 20 hit addresses.

Control does not stay with the order

specified in cy, after it is performed,

control returns to the next order after

the I order.

INI Same as the I order except NI (next

instruction counter) is advanced when

the order specified in cy is done. This

allows cy to specify the very next

order following this INI order. (If

cy is not SELF+1, the next order is

skipped.;

LPIL Same as LPI except the leading bit of

ß is spread to the left to form a 20

bit address when the effective address

B is computed.

SUL aa -*(b) and jump to cy + (ß) where ßmust

be an index address.

IUL ao/ + (b) -(b) and jump to cy + (ß) where

ß must be an index address.

EAL aa + (b) -* (ß) where ß is an index address.

IM or MI Integer Multiply where only the last 5

sexadecimal characters of ß are used as

the mutiplier and the integer product

is stored in C.

RCL Read the real-time clock into A. B

must be 1 and jump to C. (See R.CLK

subroutine.)

IT A -*(k): B -»(5); C -*(6) and jump to OUO.

116

SPECIAL COMMENTS ON USING THE ABOVE SYMBOLIC ORDER TYPES IN FORAST

SIL is translated much like a SET statement where the general

form of (index address = address to put into the index) is the preferred

way of writing these instructions. Any number of indexes may be set and

a GOTO may be used after the last one to get a SUL order for the last

one. (Note that only two indexes may be set in each computer word when

SIL is used.)

Examples: SIL(I = A)j - B)C = 0)KK = 19^62 0

SIL(A,I)T = 3)GOT0(BGK 3)0

Note: A,I is the same as I = A in a SIL statement.

ILL assumes addresses in the same general form as the INC

statement, (l=I+3)isan example of the preferred way of writing

these instructions. Any number of indexes may be increased (or decreased)

and it may be terminated with a GOTO that causes a IIJL order to be

used for the last one.

Examples: IIL(l = I + l)J = J - 3)0

IIL(K = K - Jt200)T = T + 0800)V = V + 3)GOTO(7.20

Note: 1,1 is the same as I = I + 1.

SIJL and IIJL must have only one index that is to be set

or increased and a jump address.

EAL must have only one effective address to be computed and

may optionally be followed with a normal cy address that is not directly

used by the computer. If there isn't an = character after the first name

in the first address, the instruction is processed in FORAST as a normal

three address instruction.

Examples: EAL(l = A,J)0

EAL(K = B,M - 2)Q,I 0

EAL(A)I,J)0 IS same as first example .

117

Four addresses may "be written in the I and INI Oxders, thi-ee

index addresses and a non-indexable fourth address that is the location

of the next order to be done = (See above description of the I and INI

orders.) If the fourth address is omitted, SELF + 1 is used and the

order type will be set to 168 even when I was the symbolic order type.

The index addresses can not contain increments. If an increment is

desired, it must be written with the primary addresses in the order that

is referenced by the cy of the I or INI order. The order referenced by

an I or INI order should be preceded by "LA./" if any addresses written

in that order might be assigned to an address longer than Ik bits. The

IA/prevents the compiler from automatically inserting another I order.

Examples: l(l)j)K)A + k $

INI(M))V <f> IA/TP(A + l)/LL)R $

XV. OPERATION AND SPEED OF THE ORDVAC TRANSLATOR.

The ORDVAC translator program is now on magnetic tape. The

program to be translated must be preceded by a "Tape Start" card and

the data to be read by the translated program should be placed immediately

after the END card. A blank card must be put at the end of the deck;

otherwise, the last card will not be read.

xiiK urujvrto brauöiat/iOn is clone in uiie iuij.owing bc^uciiLt:«

1. The symbolic program deck is read at maximum speed (200

cpm) and concurrently changed to alphabetic computer

words of five characters each. The non-blank words are

saved on the drum until the entire program has been read.

2. The first part of the translation process calls the

alphabetic words from the drum and generates machine orders

and stores the partially translated code back on the drum.

It creates a dictionary and constant pool in the memory.

118

3. After the END card is translated, the automatic assignment

of all unassigned symbols is done.

k. The memory is cleared to zeros (except for 0-OL; 040-end

of constant pool; and ahout 0N00 - OLLL).

5. The partially translated code is called from the drum, the

translation is completed and the code is stored directly

in the memory where it belongs for running. (Programs

should not be stored below 0N00 in the memory).

6. All of the subroutines are read and the ones used by the

program are stored in the memory. They are stored back-

wards from 0J70 unless the program has specified that

they be stored elsewhere. The input-output routine is

always stored at OJJO. The subroutines are on relocatable

binary cards and therefore do not require translation.

The time required for translating a FORAST program consisting

of C cards on ORDVAC can be roughly approximated by the following

L UJ.lUU-i.Cl •

time in sec. = 20 + C

The 20 seconds in the formula is the time required to read the translator

program from tape. The time to actually read and translate a symbolic

program card is almost a secord in an "average" size program of about

150 cards with about two statements per card. (This time will vary

considerably with the length and number of statements on each card, the

number of different symbols used, the length of the program, etc.)

XVI. OPERATION AND SPEED OF THE BRLESC TRANSLATOR.

The BRLESC translator is on magnetic tape and is designed

for use with the "tape start" button. To translate a program, it

should be placed in the card reader and the data that it reads should

immediately follow the END card. The tape start button is then pushed

and this causes the program to be translated and run. (Tape switch 15

ixy

must be set to the tape unit that has the compiler tape on it and tape

switch 7 must he set to a tape unit that contains a "temporary" tape.

Manual read switches 3D and 35 should he down for card input and output.

The compiler and the translated program will read magnetic tape using

tape switch 6 if manual read switch 36 is up and they will put all

standard output on tape using tape switch 8 if manual read switch 35 is

up. For tape input or output, 80 characters on tape are the same as

one card.)

The BRLESC translation .is done in the following sequence:

1. The symbolic program is read at 800 cards per minute and

most of the translation is done concurrently with the

card (or tape) reading. The partially translated code is

put in the memory and on a temporary tape if the memory

gc ua 11U1. i-i. uuiiL) ucxuo puui a.iiu. mu 1/J.uuaij j_o uj.ca.ucu.

and kept in the core memory.

-TÖJ_ÄJ 4-ViÄ Gt--»--~ ~ J- -* — ~ - d.. Alter xne mnu ca.ru is ^rttiibj-abtiu, uue auuOnßi/ie assignment

of all unassigned symbols is done.

3. The memory is cleared to zeros. (0K-03F and end of

constant pool to about 0N00).

k. The partially translated code is called from tape, the

translation is completed and the code is stored directly

in the memor-"- where it belongs for runnlnc. (Programs

should not be stored in the last 8000 words of memory.)

5. All of the subroutines are read from the compiler tape

and the ones used by the program are stored in the memory.

They are stored backwards from OSKO unless the program

Vio <r t.r\o/.i-Piü^ -f-Via +• +hov >IP e + nr^H (=>1 fipvhpiv». rVhP 1 lTDnt - 1 lfc*U o^1— ^_i_ J. _i_v~\»i vi y *• w UM^ j u* t-i vw*.— IA W_MV— ..— 1. — . _ _£

output routine is always stored at GN80 and the N.PKOB

(next problem) routine is always stored at 0N70-ÖN7L.

The subroutines are in a binare re-locatable form and

therefore do not require translation.

12f>

The BELESC FOEAST compiler is one of the fastest compilers

that is in use at this time. It requires about two seconds of tape

time for itself and easily translates as fast as it can read the

symbolic program cards at 800 cards per minute, regardless of how many

statements are on each card. The time required for translating a

program consisting of C cards on BRLESC can be approximated by the

time in sees. = 2 + C/l3 + C/lOO

The 2 seconds is compiler tape time, the C/l3 is card read time and

C/lOQ allows time for reading the "temporary" tape and completing the

translation. If the symbolic program is put on tape, then the trans-

lation will be about 3 times faster than from cards. (The time required

to translate from tape will vary considerably with the program to be

translated. For most programs, it will vary between 2 to 5 times faster

than the speed of card translation.)

Since the BELESC translator is so fast, it is not necessary

for programmers to obtain binary card decks for production running. It

would take about as long (possibly longer) to read the binary deck as

it takes to translate the symbolic deck.

XVII. INSTRUCTIONS FOR USING FOPAST TRANSLATORS TO RUN PROGRAMS.

A. ORDVAC

A "tape start" card must be placed in front of the symbolic

FÖRAST program that is to be translated and the data deck for the program

is to be placed after the END card and should have the usual blank card

at the end of the entire deck, (It is usually permissible to also have

a blank card between the translator and the first data card since READ

statements ignore the first card when it is blank.) This deck is then

run in the standard wav.

121

If a teletype print occurs "before compilation is completed,

this indicates that the program contains an error (e.g. a mispunched

card) and will not compile. In this event, a dictionary is always

punched on cards so that the programmer might also check it for

indications of other errors.

The ORDVAC compiler halts at 009 after finding errors except

for a few types of errors for which it may halt elsewhere. If the

ORDVAC should halt during the translation without a teletype print,

then the contents of OUJJ should usually help the programmer to find the

trouble. (OUJJ will contain the card counter.) Do not toggle past any

halts that occur during compilation.

After the compilation is completed, the program "begins to run

without any halt in "between. If the running program halts at any place

other than OI2J7 (counter has 0LN8) or 0L9L (counter has OLKO), a manual

jump to 006 should be done unless 006 contains a jump to 0LN7 anyway.

(OUT? is the standard N.PEOB halt and 0L9L is trying to read more cards.]

Any teletype output should be saved for the programmer.

XVIII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON BRLESC.

To compile and run a FORAST program on BRLESC, tape switch 15

must be set to the tape unit that holds the compiler tape and tape

switch 7 must be set to a unit that the compiler may use for temporary

storage. Manual read switches 36 and 35 are used to control the type

of input and output. Switch 36 must be down if the input (program and

data) is to be read from cards and it must be up if the input is on

tape. (Tape switch 6 must be set tc the unit holding the input tape.)

Manual read switch 35 must be down if the output is to be punched on

cards and it must be up if the output is to be put on tape. (Tape

switch 8 controls the unit used for the output tape.)

When the input is on cards, the program deck and its data

are loaded into the card reader and the tape start button is pushed to

begin the compilation of the program.

The tape start button is always used to start compilation.

It is possible (but improbable) that this will not properly begin

compilation if the compiler tape \,15; is left on certain blocks. If

after a tape start, compilation does not proceed as expected, just do

another tape start and compilation should begin. The compiler tape is

generally seli-correctlng with regard to tape start, tape errors and

end of tape. It contains many copies of the compiler with a file mark

between copies. Almost all of the blocks move to the beginning of the

next compiler if a tape start is done when the tape is not at the begin-

ning of a compiler copy. All blocks are read and parity checked (by

programming) before they are used and if an error is found, the block is

reread once and if the error persists, the tape is moved to the next

compiler copy and the block is read from the copy and checked, etc. To

save time and avoid wear at only the beginning of the tape, successive

problems will use successive copies of the compiler. If the compiler

tape comes to the end of ail the copies on the tape, it moves itself

back twenty copies and re-uses them.

After a problem is compiled, it automatically begins to run

unless the compiler discovered one or more errors in the program. If an

error is found, during compilation, a card is punched (or tape is written

if using tape output) for each error, the "dictionary" is printed, and

the computer halts at (MkO with a B address of OLLL in the halt order.

Initiate past this QN^O halt only if the problems have been "stacked"

as described below.

If the problem comes to an abrupt or unusual halt or if it

cycles, note this fact along with the NI and PO registers for the

programmer's information and then do a jump to 058. Do not jump to 058

if the halt was at QN^O which is the standard halt when a problem is

completed and is ready to begin the next problem. After going to 058,

the computer should soon halt at QN^O. (Going to 058 allows the programmer

to do some extra printing after his problem runs into trouble. It also

provides for checking and re-setting the overflow indicators and it causes

the time "charge" card to be punched.)

1?^

To stack problems for tape input; one (or more) PROB cards

must be placed at the end of each problem deck. The problem decks are

put onto tape by the off-line converter or by a program on the 1401.

Initially the tape must be set up for writing by pushing the "prepare to

record" button; then each problem is put into the card reader separately

with a PROB card at the end and is put onto tape. The block length must

not be more than eleven cards per block. (Each problem may have a different

block lengthy but it is best to actually use eleven card blocks as it

saves time over using shorter blocks.) The "record remains" button and

then the "write intermediate file mark" button must be pushed at the

end of each and every problem. When all of the problems have been put

on tape, an extra "END TAPE" problem should be put on the tape. Then

the "record remains" and then the "write final file mark" and then the

"rewind" buttons should be pushed. (The "END TAPE" problem put at the

end of the tape takes care of rewinding both input and output tapes

when manual read switches 36 and 35 are up and comes to an absolute

halt at 0N50.)

When running programs that have been stacked on tape, it is

permissible to do a tape start at any point on the tape and the next

problem on the tape will be done. However, if the output of a problem

is being put on tape instead of cards, then a tape start before an 0N40

halt may cause the problem that just finished to not print its last few

"cards" of output on tape. Thus when tape output is used, the operator

should always attempt to get to the 0N40 halt by jumping to 058 after

any other halts. At an 0N40 halt, it is better to initiate than to do a

tape start. The a address of the halt order at QN40 (and of 077) contains

an integer number (1,2,3;...) that shows how many problems have been

run since the last tape start.

The leading part of 07J usually contains the actual problem

number assigned to the problem (C-9l6, 0-780, etc) in six bit characters

while the problem is running. (Only rightmost 60 bits are used.)

124

If the nth problem on an input tape should be run without

running the preceding problems, this can be done by moving the tape (n-l)

file marks before doing a tape start. (There is a file mark between each

problem on the tape as well as one at the beginning. The tape must be

stopped ahead of the file mark that precedes the next problem that is

to be done.) It is possible to skip n problems on the tape by moving

the tape forward n file marks.

When tape output is used, the tape contains variable length

line control characters for off-line printing. There is a file mark

between each problem so that the printer may be stopped at the end of

each problem and n problems may be skipped by moving the tape n file

marks. (Move n+1 file marks to skip the first n problems because of

the extra file mark at the beginning of the tape.) The last problem

on the tape will print only two lines and the last line will say "IAST

PROB END TAPE".

When card output is used, the output of each problem should

be taken out of the hopper and kept separate from the other problems.

If a problem has halted at ON^tO, it is not necessary to read down one

blank card as the program has already done this. It is possible that

some binary cards will be punched when using tape output.

When problems are stacked on an input tape, a list of the

problems that are on the tape should be made. Along with the problem

number and programmer's name, the maximum run time and any special

instructions should be noted so that the computer operator may have this

information available. This list should be kept with the output tape so

that people know what is on it. Each output tape should be kept for at

least one week.

SUMMARY OF INSTRUCTION FOR RUNNING FORAST PROBLEMS ON BRLESC:

1. Tape control:

a. Compiler on tape switch 15, is activated by a "tape

start".

b. Tape switch 7 used for temporary tape.

125

c. For tape input using switch 6, set manual read switch

d. For tape output using switch 8, set manual read switch

35 up.

2, Halts:

a. N'+O: end of problem, initiate if problems are stacked.

(a is the no. of problems done since the last tape

start; also in a of 077. If ß = LLL, there was a

program error detected by the compiler.)

b. N50; end of all the problems on an input tape 6.

c. All other halts or cycles; note PO and NI registers

and then do jump to 058. It should soon get to NkO.

If it doesn't, then must use card deck to get charge

card" and then do a "tape start" to begin next problem.

3. Stacking problems on tape (done on off-line unit):

a. Get tape at its beginning and push "prepare to record"

button.

b. Set block length to eleven (ll) or less.

c. Set switches for card-to-tape operation.

d. Put 1 (or more) PROB card at end of problem.

e. Initiate to put problem on tape.

f. Put problem number, programmer's name, maximum run

time, and any special instructions on a list.

g. Push "record remains" button.

h. Push "write intermediate file mark" button,

i. Repeat steps d through h for each problem,

j. Put special "END TAPE" problem on tape. (Don't need

PROB card.)

"1.- "0-.r-.Vl ,Tv.Q^»^v.f

1. Push "write final file mark" button,

m. Push "Rewind" button.

1+. Stacking problems on tape can also be done by IEM lUOl

computer by using the proper program.

126

5. Listing output tape or producing cards off-line:

a. Set for tape-to-printer or tape-to-card operation.

b. Set to stop at each file mark. (Stops between each

problem.»)

c. Do variable length line list unless special instructions

say otherwise.

d. Start a new page at beginning of listing each problem.

(is done automatically unless the next problem requires

80 or 160 column list.)

e. The last problem on the tape prints just 3 lines of

print, the last line says "ND TAPE".

f. To skip n problems, skip n file marks. (Skip n+1

file marks if starting at beginning of tape.)

1. The method for arithmetic formula translation is a

modified and expanded version of that described by J. H.

Wegstein in [3]•

2. The end of statement symbol "$" is not required at the

end of the last statement on a card. The end of a card

automatically causes the end of a statement except when

the next card has "CONT" in cols. 7-10.

3. There is no limit to the number of CONT cards permitted.

k. Two adjacent symbols "ifp" causes the rest of a card to be

ignored so that it may be used for comments.

5. A statement of "ORPVAC 1o" causes BRLESC to ignore the

rest of the card (and any successive CONT cards).

6. A statement of "BRLESC <jo" causes ORDVAC to ignore the

rest of the card (and any successive CONT cards).

7. Any right parenthesis immediately preceding $ may be

omitted. Wherever parentheses are used only to separate

names or numbers, a single right parenthesis is necessary

and sufficient« The following left parenthesis is optional.

127

W. XJO-CLlXJi. ^CfcJ. U.Ö J_li. Ui-L^ _pj. W^J. UtUl <-*-L ^ X^ll^l V-U. . J_/_l_k-t.iiiV V,VXUUU1U

are ignored except in a "string of characters" in a

PRINT or PUNCH statement and within a symbolic ORDVAC

9. The translators do not check the memory space required

by a program against the space available. This may be

TTfly + nnllv r>"hor»Vorl nn ORPlVA H >nr mftV-Tnrr CITPP + Vifl+- +V»P> <*»

SUBS." address is the largest in the dictionary (except

for N.PROB). The next largest address will usually be the

last one that is marked with an M« However this doesn't

necessarily check the total amount of storage required by

the running program. ORDVAC at present has about 3200

words available for a program. On BRLESG; programs have

a minimum of about 30,000 words available and each program

should leave at least 62k words at the end of the memory

for tape output buffers. The program may be further

restricted by 4000 words or more if the compiler stored

"large address" orders in the next to last segment of i+096

word segments. (The dictionary print includes a statement

Ui wucxc -Lcxj gjC aauicao v-.i u.<3i o a,j. c o wi ^w. • y

10. The best way of code checking most problems is to insert

extra PRINT statements. They can be used to check both

Be sure that the printed results can be identified with the

proper PRINT statement. It is a good idea to include some

alphabetic information with each print for this purpose,

This method of code checking is practical because of the

fast compilation. The M.DUMP idea (See XIIl) may also be

used to do some printing after a program runs into trouble.

J.J.. Xt is recommended tnactne rnuu, .DJJUU, üIH aria IHOX carua

be at the beginning of the program and in that order. All

SYN cards must be ahead of the program on ORDVAC and BLOC

must precede the usags of any of the block names it defines.

12. The physically last card of every program must he an END

card.

13. Location names appearing in LOG, DEC, SEXA, DEC =, and

FOEM are assigned storage space at the point they appear

in the program. These types of cards must not he inserted

in the midst of a program. They should not follow any

executahle statement except a GOTO statement and should

normally he at the "beginning or end of the program.

14. Integer numbers must not he used as symbolic locations.

They will he used as decimal ahsolute addresses. Numbers

with decimal points may he used as symbolic locations.

15. There are no restrictions on transferring into or out of

the range of COUNT statements (except for the use of

COUNT without the "IN clause" on BRLESC.) All index

registers always hold their current value. However since

BRLESC has only 63 index registers, a F0RA8T program on

BRLESC must not use more than 5^ index names unless some

are assigned the same storage hy a SYN card. Any memory

ceil on ORDVAC may be used as an index register.

16. Indexing must correspond to memory allocation because the

value in an index register is added to the primary address

to get the effective address. Thus if XI,X2, ... are

stored in every other memory cell and addressed hy writing

XI,I; then I must he increased hy two to access consecutive

X's. Note also that X,I when I = 1 is not necessarily the

same as XI,I when 1=0 unless X is defined as part of a

"BLOC" that is assigned consecutive cells. To index

through a "BLOC", the primary address must he a member

of that block. In these respects FORAST uses more of

the philosophy of an assembler rather than that of a

compiler.

129

17. BRLESC index registers are not full words. Therefore

it is not permissible to store floating point numbers in

cells that are assigned to index registers. Integers

larger than 16,383 should not "be stored in them either.

Care must be taken when usins nesa+i've numbers in index

registers as the sign bit will always be zero when they

are used as full words in the arithmetic unit.

18. It is easier to define a "universal" language than it is

to use that language to write "universal" programs. Below

is a list of some of the differences between ORDVAC and

BRLESC that may cause the same program to do different

things on the two machines. These differences may cause

the programmer to want to use slightly different programs

on the two computers or to run a program only on one pf

the computers.

ORDVAC BRLESC

Input-Output

Word length:

FlsPtcNo= Range:

Fl.Pt. Rounding:

Index Registers:

Memory Size:

Instructions per word:

Address length:

1
-1- at least 20 times 0]

Cards only: magnetic tape

200 cpm in. cards in: 800 cpm

100 cpm out = cards out: 250 cpm

kO bits 68 bits

+38 +155

10 10

no yes

i+096 full words 63 (20 bits)

U096 36,864 or 53,21+8

2 1

12 bits ±0 DXT.Ö

130

19. The information on DEC, DEC =, SEXA and FORM cards may "be

preceded by "ORDVAC (" or "EKLESC (" to allow the information

on that card to be stored only on the machine memtioned.

The other computer will ignore the rest of the card (and

any successive CQNT cards). There must not be anv symbol

in the statement field to the left of the computer name.

20. SET, INC, COUNT, and SETEA statements should not use

index registers that have just been set or changed in the

same statement. BRLESC doesn't always store the previous

index result before accessing the next one within the same

BRLESC instruction.

d.s.. ciIKAK ana I*IUV.E> sxtxT,emeins may use unc ou um-ee UIUCA

registers. On ORDVAC, the first three cells of formula

temporary storage are used. On BRLESC, index registers

2,3, and 4 are used.

22. It is not permissible to READ and PRINT zero numbers (by

using "(I)NOS.AT" where I = 0) or to CLEAR or MOVE zero

numbers. A max count of zero in a COUNT statement is the

same as a count of one.

23. An IF statement always compares the contents of cells.

While it may seem that statements of SET (A = A2 $ and

IF-INT(A=A2)G0T0(B)^ should cause a transfer to B, they

will not. The IF statement checks the contents of A

asainsi the contents of A2 rather than the contents of

A against the address A2.

2k, The translators produce efficient but not necessarily the

best possible code. Each operation is generally coded in

the best way with respect to the previous operation. The

translators make only one pass, do not re-arrange expressions

nor waste time looking for common sub-expressions. Common

sub-expressions, expecially those involving the use of

subroutines, should be evaluated in separate statements

and re-named by the programmer. The efficiency of the

11X

translated code is almost entirely dependent on the

efficiency and skill of the programmer. In any translator,

the inefficiencies that can be removed by the translator

are always a very small percentage of the inefficiencies

tiiao a. ^rugicuuiuci ucui ,pu.u IUUW c* piugicuut JL L» J_ö »T^J. uxJ^r VJ.

comment that FORA.ST does not allow some excess generalities

that tend to produce inefficient code and protracted tape

000 virtVißf TTVicnr Q -v»e» ll 1 mi'vod n n + orrov OTl^ "PI T»+ fl Y»^ "h.Vrm^+".i (^

expressions, (2) variable multi-dimensional indexing, (3)

arithmetic expressions everywhere, (k) ALGOL type "procedures ,

(5) dynamic storage allocation and (6) optimization of

index register usage. (Optimization of index registers

is not necessary because of the fact that both machines

have 6^ or more index registers.)

ACKNOWLEDGEMENTS

Mr. Alfred Anderson programmed the decimal input-output routines

for both computers and the modified-Adams subroutine. Mr. Donald Taylor

programmed the matrix subroutines, the Runge-Kutta-Gill subroutine and

Simpson's integration subroutine. Miss Helen Mark programmed the random

number subroutines NRN0S1 and NKN0S2 and Mr. Barry Rodin programmed

NRNOS. for BRLESC. Miss Viola Woodward programmed the Cowell and Bessel

OUUIUU^IIICU. fn;iuiuwj.cugcmcii u IQ mauc ou i'i_L • J. ^ uv

editorial assistance.

T.TrWD W nAMPRTTTT.T. flT."RTMTVT A TiV.nK

1 "59

1. LESER, T. and RCMANELLI, M. Programming and Coding for ORDVAC,

•DT5T Oö-^,-NV*+ TVT^ Ü07 fn^+nVipr 1 0^6} _

2. CAMPBELL, L. and BECK,, G. The Instruction Code for the BRL

•m__j j„ o«_- 4-J-P-!« ri^m-•-,+ a-»~ f'n•RT.'FC:P^ "HPT. Rom-rt. N^ 1 ^VQ

(November I96I).

9. WJiljG'.L'EiJLW) O • JJI'CJIU. r UXTULU-tLÖ OU UUlU^UOCi. UIJCJIUCU jjo.ng.u.a.gjV- }

Communications of the ACM, March 1959-

155

APPENDIX A. SYMBOLIC ORDVAC ORDER TYPES

OLD SYMBOL

(+)
(-)

i . I m
1-1
'.1
.-J

A+

A-

A(+)

A(-)

A|+|

Al-I

FORAST SYMBOL

+

(+) or + H

(-) or - H

1 + 1

1-1

- H V

A+

A-

A(+) or A + H
A / \ A TT
H\-) OX" A - II

Al+1 or A + V

Al-1 or A - V

XU or *U

(X)

LS
T (-1 _
JJDO

RS

IRS
cc

1SS

SST

OLD SYMBOL FORAST SYMBOL

E E

T7t E'

oE oE

oE1 oE«

M M

IM IM

nM oM or OM

© OR

t-r,\

c C or C +

C C or C'+

TT U or GOTO

U1 U'

oU» oU'

zx ZX

zu ZU or HALT

T T

P •n r

IBM IN IBMI

IBM OUT IBMO

DR or DRI

Drum write DW or DRO

"A" «A«

Ü* U*

Index I

Mag.Tape Select TS

Mag.Tape Transfer TT

Mag.Tape Parity TP
PVipr>>

135

APPENDIX B. SYMBOLIC BRLESC ORDER TYPES

SEXA.

2

3
h

5
a u

SYMBOLIC O.T.

7
8
Q

K

S

N

J

L

A or +

S or -

M or *

D or /

SQRT or SQ

SH

TP

B

CB

CNB i or CN

PMA

IT

00 HALT

01 n i.ini rti~
D£iX OI' DJ.

02 INC or II

03 LP or LOOP

T ^v TTIWP

05 JS

06 J+

nv J-

üö 10 or CARD or TAPE or

DRUM or TYPE or ZERO

09 SIJ or SETJ

TTT ^-^ TITPT

ON JA

wo TO
OO

OF NOP

OL RSW

MMTP i'it'jj.

11 SIL

12 IIL

1 3 LPI

li+ JL

15 JSL

160 I

168 INI

IT LPIL

18 MMB

19 SIJL

IK IIJL

IS EAL

IN JNA
-i T

OHO

IP IM or MI

1L RCL

OS EA

136

F Floating Point D

X Fixed Point B

A or + Accumulate Result T

V Absolute Value of Operands R

u

N

R

uiuiuniia.xxz,eu riua^iiife xuxno U

Normalized Floating Point

Use R Register and Fixed

Double Length

jDOOj.eän

Tags Included

Round (if precedes direction)

v^yc-Lic

Z Zero Last Ö Bits.

L or + Left

R nr _ Ri CTVI+.

Magnitude or smrx may De exxner aecxmax

or sexadecimal but must "be written

last.

BOOLEAN FUNCTIONS

0 0

1 x y

2 x y

3 x(not)

it x y

5 y
V •" -»- ** •*»• f T?v n^^

x + y

n
O

 / A ._ 1 \ xy \Hjiaj

9 xy + x y

10(K) y

xxVo/ *r X ii-

12(N) X

13(J) x + y

x + y (in,or)

I51L;

-LJ f

APPENDIX C. SYMBOLIC C ADDRESS FOR BRLESC INPUT-OUTPUT ORDERS

UAttU

READ 68

READ 80

PUNCH 68

PUNCH 80

m A 1 ».I

UttUM

Dp% _ +. _ s where

DW - t - s

CLEARD - t - s

CLEARM

t = track no,

s = sector within track

and both t and s must be

decimal or sexadecimal.

CLEARD means to store zeros

on the drum.

CLEARM may be used to store

zeros in the memory.

All of the following tape commands must be followed by a dash

(minus sign) and the tape unit number in decimal. A trunk may be speci-

fied by following the unit number with A or B. If no trunk is specified,

tape read orders will use trunk A and tape write orders will use trunk B.

A "-P" should also be used on "tea character" read orders if the computer

should store a aign bit when a tape error occurs. The 10 or 12 that

follows R, RN, and W below indicates the ten character per word mode or

the twelve character per word mode of reading or writing magnetic tape.

See [2] for a description of the BRLESC magnetic tape system and the

meaning of the following symbols.

READ WRITE

R PR w
RIO REW W10
R12 REWIND W12
RN10 REWI

TW T rw
TIIVTT /"> TTMT.I 1 Ml \

lll'l'l

UNW WFMR
M0VEF0 BW
MB GAP
MOVEBA
MFMF
MFMB

138

APPENDIX D. NUMBER OF ELEMENTS IN TRIANGULAR ARRAYS

n not augmented augmented

1 1 2
2 3 5
3 6 9
4 10 14
5 15 20
6 21 27
7 28 *q

I SS

8 36 44
9 45 54

10 55 65
11 66 77
12 90
T 1 i~iT ml,
-L? ^-L xut
Ill no

-*"*-S

15 120 135
16 136 152
17 153 170
18 171 189
19 I9O 209
20 210 230
cn OXT oco
<... i <S-*- •-y-

22 2S^ 275
23 276 299
24 300 324
25 325 350
26 351 377

TrfO
9fO

\.r\r~
«tu?

oA),n£)IX)I c_\-» T\-n_* TS-r

29 435 464
30 465 495
31 496 527
32 528 560
33 561 .59*
3^ 595 629
*c £xn ££c ^^ ^„/V \J\J y

36 666 702
37 703 740
38 741 779
39 780 819
40 820 860
i.i Qz"-i r\r\/~i
*f± <JO_L yve:
ho on* QkR TU 7"S 7-'S

43 946 989
44 990 1034
^5 1035 1080
46 1081 1127
4? 1128 1175
48 1176 1224

1 00c. 1 Orrk _1_ t— 1 -T

SO 1275 1325

n not augmente d augmented

51 1326 1377
52 1378 1430
53 1431 1484
54 1485 1539
55 1540 1595
56 1596 1652
R7 s 1 1710
58 1711 1769
59 1770 1829
60 1830 1890
61 1891 1952

1953 2015
£*
<->>> OJJ.U cxj\y

6k 2080 2144
65 2145 2210
66 2211 2277
67 2278 2345
68 2346 24i4
69 2415 £404

70 2485 2555
71 —ss^ 2627
72 2628 27OO
73 2701 2774
74 2775 2849
75 2850 2925
70 2926 3002
r-Tt-f

t i J\J\JJ
7fi

1 »» SS s

79 3160 3239
80 3240 3320
81 3321 3402
82 3403 3485
03 3400 356y
84 3570 3654

s^->s s •*7kn s 1 -~
86 3741 3827

87 3828 3915
88 3916 4004
89 4005 4094
90 4095 4185

tiuu
Qs s<- k07R -r.-| w -TS 1 «

93 4371 4464
94 4465 4559
95 4560 4655
96 4656 4752
97 4753 4ö5ü
98 4851 4949
QQ
SS • ss~ =;nko

SV'S

.00 5050 5150

139

ORDBG Form 2534-(R), 2 Feb 60 Appendix E.

CODIMG FORM

PROBLEM Summary of Pseudo Order Types

CODER DATE RAGE

LOCATION

1 6

"OTEDEir
TYPE

7 10

FORMULA STATEMENTS

11 A 20I21 B %Ul C holkl COMMENTS ^

PROB W-622 J.R. BROWN JULY 1962 SATELLITE DATA FITTING

_--. DATE AUG.20/62 Specify current date.

__.. COM Entire card is comment.

_—. MOOS FLT or FIX or FU Integer mode not allowed.

__.. BIJOC (A - A2»f)(0200/117 - Tl+l/j) Ml - VSk/l f Define blocks.

_-.. SIS (A2 == XDOT) Q4 = 2A8 = X»)(N = 9) % Assign same address to different names.

 CONT Used to continue from previous c«rd.

___, LAST (X) T) Z i» These names are assigned last.

A LOC B)(c) R $> Used to get names assigned in desired sequence»

DKC (l6.l) Jlk) X.214 B-l) 122) % Store decimal constants.

DKC » TBAR = lU)(EPS = .1-5) PI = F3.1U159) J6 = I^OO i Name! and store dec. constants.

SEXA (3K) k-9%) 6k ZFKB i> Store sexadecimal constants. Z indicates one string; of zeros.

FCRM (9-10)l-3)4-5)6-3-5Jl Store format for decimal input or output.

«•~«i LI:ST (S.CODE) B.CODE i Used to get dictionary and/or code printed.

SI'OR 31A + 3 i Iß same as if were a location on the next card.

»—_, NOS. 0L0 $ Used to change address of constant pool.

— .._. FTTS 08O it Used to change temporary storage used vitfain formulas.
„_., ASON (Q s 8) £ Used to re-assign symbolic names.

__« STJIBR (ARCTAN = 0800) FIX % Äy be used to assign subroutine storage or define new functions.

ALFN Used to store alphanumeric constants.

O.T. Used to define ne:v pseudo BRLEBC order types.

END GOTO(START)# Must be last card of program.

Dashes in the location field above indicates that this field is not used on ORDVAC.

ORDBG Form 253^-(R)J> 2 Feb 60 Appendix F.

CODING FORM

PROBLEM Summary of Assembly Code and Statements

CODER DATE: FACE

LOCATION

L 6

"OT05ER-
TYPE

7 io

FORMULA STATEMENTS

11 A 20121 B ^50 M C tolui C0MMENTS 80

fBTWftn AsiwjiiMy Orrfo-rn

K±L B.I

FM Tl 4 Any Cnrmnpnt al 1 owpd here after ^.

MACE + (A,J)< M (B,I+1)# F + (Rl) 4 J/(3k)i A + 4 FM(X5) * U(6.2)#

:BRLE3C Assembly Orders

FA X) Y) Z.I3 4 JB(Z,I3) R) SIN £ B12(X))T 4

SHI(T1 + 2)(BTCRll+) 0 4 TAPE ()) PW - hB 4

Examples of Arithmetic Formulas.

Y = 0 i A = B i H = S = T = 0 i Y,I = A + B/C - EXP(Q + VI)0

8 = R ** 3 * V = - (V - VQ * 6Al7)R 4 2C4 = (-Ah) B6 * C,(l-l) - W,K 4

FLT(R,(I + 2) = 8,I(X *» 2 + Y ** 2)$ FLX(T2 = .3(A - R)£ INT(11 = I - 3)4

Examples of English word statements allowed.

OOTOfLOC 3H G0T0f8.5)< C!0T0(.E)* G0T0(N.PR0BVJ;

SET(I = 0) J = l) E = E2)£ SET(N = k) K = N + l) GCfHO(6.k)4

SETEA'fl = A.j) K = R.T - *>) P = X.V1 4

TW(1(T = T + l).T-.T_?£ TNfi(H = R + nftli.) OOTO (iQ.?) 5t

C0UNT(10)IN(I)G0 BACK T0(39.lM C0UNT(N + 2)BY(2)IN(J)G0T0(,B)^
IF(X)IS + CR(Y * B = 0)Q0T0(B0K 3)4 IF(X > A + B < 1U)AND(V = 0)GOT0(;5.)jl

IF - INT(I + J > = 5)CB(A,I = B,J)WITHIN(.001)G0T0(S3)£

CLEAR(15)N0B,AT(A)# CLEAR(N/3)N0B.AT(B/6)£

MOVE(2U6)NOS.FROM(X)TO(Y)£ M0VE(j + 1U)NOB.FRCM(V,I/-1)TO(A)

READ(XI)X2)X3 4 READ(5)NOS.AT(M/2)£ READ-FCEMAT(F6/U)-(I6)NOS.AT(XI) 4

FRINT(X)FX)RX 4 PUNCH(M + 2)N0S.AT(S,K3 + 2/U)x 4 PRINT < X TOO BIG > (x) 4

ENTER(SINC0S)X)SIN X)C0S X 4 ENTER(MAT.MP)Al,l)(Bl,l)Cl,l)5),l)5 4

HALT 4 HALT(3)4

ORDBG Form 253U-(R), 2 Feb 60

CODIMG FORM

Appendix G. PROBLEM Sample Problems

CODER DATO PAGE

LOCATION

1 6

-01S5EET
TYFE

7 10

FORMULA STATEMENTS

ii A aolzi B *>k c «Jin C0MMEtras 80
8

Statement of Problem: Read in sets of X,Y and Xi for i = 1,2, ..,.,8. Compute s = JXY + 51 Xi

and print X,Y and S. A card with an X value greater than 10" y will follow the

last set of date. All nos. are floating point numbers usIns standard 1:2 nnlvmm flplds.

PROB C-905 L.W.C. AUGUST 1962 SAMPLE PROBLEM

BLOC (XI - IB)

1.1 READ (X)Y)8)N0B.AT(X1.)£ IF(X > Sl)aOTO(N.PRÖB)^

SET(l - 0)i 8 = 3(X * Y)

2.1 8=8+ XI,I

ccum'(8)m(i)aoTo(2.i)£

pRnn'(x')Y)3 i aoTo(i.i)*

SI DEC (1. + 35)
END aoro(i.i)^

Statement of Problem: Read an n by n square matrix, find and print its inverse. Read another

matrix, etc. Assume standard input with a blank card at the end of each matrix. Print the

inverse with five 15 col. fl„ pt. fields and a 5 col. card counter that starts at 1 for each

matrix. Also print a blank: card between each matrix done.

PROB C-906 L.W.C. AUGUST 1962 MATRIX: INVERSION

LAST Al

START READ(I6;583)N08.AT(A1)£ ENTER(CVIT0F)9)N $ N = SQRT(N)^

ENTER(CVTBOl)N)m. * ENTER(MAT.INV)Al1.NI i

PRINT-70RMAT(F) -(, 9)N0S.AT(Al.)lt

ENTEfl(PRINT BLANK)* ENTER(ZBROCC)jt GOTO(START*

F FORM (9 - 15) 1 - 5) 5 - 1 - 5 %

END G0T0(START)£

ORDBG Form 253^-(R).» 2 Feb 60

CODING FORM

PROBLEM Sample Problem

CODER DATE PAGE

LOCATION

1 6

-mm
TYPE

7 10

FORMULA. STATEMENTS!

11 A 20l21 B 50 51 c uoki C0MMENTS 80

Bltatement of the Problem: Read an indefinite nrnhpr nf flotn points (X.Y) and determine the

least squares quadratic fit of the form Y »1 Cl + C2X + C3X2, Assume X is in cols. 21-30

with an assumed point between cols. 2k and 25 and no exponent. Assume Y is in cols. 61-70

with an assumed point between cols. 66 arid 6j and no exponent. Assume an integer code no.

is in cols. 75-80. Assume two blank cards follow each set of data. Print the coefficients

and compute the residuals. Print any residual that is larger than 2 in aibsolute value alonii

with its code number. Print three fl. pt. residuals per card and insert a blank card between

sets of output.

PROB C-906 L.W.C. AUG. 1962 QUADRATIC FIT

BLOC (Al,l - A3,VSY.)(Va. - 7k) Cl - Cj) R - R5

iAm (X)Y)C0DB

».SET ENTER(]PKLNT BLANK)*

BEGIN CLKAR(9)N0S.AT(A1,1)% 13ET(I=:0)^ MUST CLEAR MATRIX FOR F.N.E.

1.1 READ-F(IMiT(Fl)-(X,l)Y)l)CQDE,I i IF(09 = O)GOTO(FIT)*

VI = 1 $ V2 = X,I $ V3 = X,I ** 2 i Vk = Y,I i

ENTER(F.N.E.)A1,1)3)V1 i INC(I = I + 3)GOTO(I.I)*

FIT ENTER(J3Y.:SNE)A1,1)3)01 i FRINT(3)N0S.AT(C1) < CQEFFS.> %

SET(J == O) L = 0 i

6.1 R.L = Y.J - (Cl + X.J(C2 + C3 * X.j))** R.L IS RESIDUAL

IF - ABS(R,I.<= 2)G0T0(8.l)* R1,L = CODK.J i

C0UNT(6/2)lTir(L}GOTO(8.l)

HHNT-F0RMAT(P)-(6)N0S,.AT(R)* SET(L = 0)W PRINT RESIDUALS

8.1 C0UNT(l)Hlf(3)lN(j)GOT0(6.l)i

ZP(L = O)GOTO(N.SET)* PRINT-FaRMAT(p)-(L)HOS.ATfR)lt G0T0(N.SET)#

Fl FORM (5 - 20) 11 - 3 - 10) 3 - 30') 11 - 5 " 10) 3 - 5) k - 5 $ INPUT FORMAT

P FORM (9 - 12) k - 9) 3 - 3) 1 - 3) 5 - 1 - 8 I OUTPUT FORMAT

END1 GOTOfBEGIN)

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

Defense Documentation Center
ATTN: TIPCR
Cameron Station
Alexandria, Virginia 2231^

Director
Advanced Research Projects

Department of Defense
Washington, D. C. 20310

Commanding Officer
U. S. Army Communications
Agency

The Pentagon
Uciohi'niTtnTi O^ T\ P.

Director, National Security
Agency

ATTN: R/D 36, Chief,
Engineering Research
Di vi s i on

Fort George G. Meade, Maryland
20755

Director
P. 0. Box 1925
ATTN: James Casey
Washington, D. C. 20505

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD-RP-B
Washington, D. C. 20315

v^umiueuiu-i-iig, umuci

Picatinny Arsenal
ATTN: SNUPA-DR, Mr. S. Kravitz

Artillery Ammunition
Laboratory, Bldg 351

Feltman Research Lab
Dover, New Jersey O78OI

Commanding Officer
Watertown Arsenal
Watertown, Massachusetts
02172

Commanding Officer
Harry Diamond Laboratorie
Washington, D. C. 201+38

Commanding General
U. S. Army Munitions Command
Dover, New Jersey 07801

Commanding General
lit kj . I1J LLlj i'lj. O O J. _i-C _. >_U1UUCLJ .1 v.i.

ATTN: Deputy Commanding
General for Guided
Missiles (l cy)

Redstone Arsenal, Alabama

Commanding General

Rock Island, Illinois 61200

Commanding General
White Sands Missile Range
New Mexico 88002

uommanamg unicer
Land Locomotion Laboratory
Detroit Arsenal
Warren, Michigan U8090

Commanding Officer
Frankford Arsenal
Phi ladeIphia, PennsyIvani a
-i m 07
±y-LS> 1

U. S. Army Chemical Corps
Research and Development

Command
Washington 25, D. C.

1U5

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

I* *~»YV1W» F» 1"1 /3 T 1^ J"» t~}-P -f*-! J-h Ö -V.

U. S« Armv Chemical Warfare
Laboratories

ATTN: Dr. Carl M. Herget
Edgewood Arsenal, Maryland
210Ü0

Commanding Officer
TT C A^nr PT3D n^rWWo-t- u. u. m mjr vjuii uuuiua u

Development Acencv
Edgewood Arsenal, Maryland
21010

Commanding Officer
U. S. Army Nuclear Defense

Laboratory

2imn

Commanding Officer
U. S. Army Operations Research 2

Group
Edgewood Arsenal, Maryland

Commanding Officer
U. S. Army Chemical Research

and Development Labs
Edgewood Arsenal, Maryland
21010

Ls/bs
FOT^-. Dpt-rink. Marvland 21701
\J » k^ • XT-J. llijf -i-^ -1- ^-* -i- ^ ^j -»- V <-A- -A

Commanding General
U. S. Army Chemical Corps

Proving Grounds
Dugway Proving Ground
T"\-. TTJ U DliAOO uugway , uueuj unwct

VVIJilUWi tVAAAlfS "~*-1. i-1. ^-v„ J-

U. S. Armv Corns of Engineers
Army Reactors Group
Germantown, Maryland

Chief of Engineers
Building T-7
T.T i_ J j. rir T\ r%
WSLöIl-LUgUUIl C?, IJ. U .

Director
Geodesy, Intelligence and

Mapping Research and
Development Agency

Fort Belvoir, Virginia 22060

P. 0. Box 631
Vicksburg, Mississippi

Commanding General
U. S. Army Engineering Research

ana ijevexopmenT. ijaDoraT-ories
ni X11 . u mir w ijj. aiiLii \ -L ujf /
Fort Rolimir. Vi fo-i m" n ??0fi0

Commanding General
U. S. Army Cold Region Research

and Engineering Laboratories
P. 0. Box 282
TT^^ Ä- = TiT TT 1_ ^ — nOTCC nanover, liew ntuupsm-i-c UJI;;

Commap^i ^^ Cr^nem!
U. S. Army Medical Research and

Development Command
Washington 25, D. C.

Commanding Officer
TT O A _ W_ JJ .„1 Tf«^ 4- u. o. Army raeuxtaj. unit

MQTVI on A ?i7ni

Commanding Officer
U. S. Army Corps of Engineers
Army Reactors Group
Fort Belvoir, Virginia 22060

Director
U. S. Army Medical Research

Laboratory
Fort Knox, Kentucky

No. of
Cordes Organization

No. of
Copies Organization

Di re ct or
U. S. Army Medical Research

and Nutrition Laboratory
Denver, Colorado

1 Commanding General
U. S. Army Electronics Proving

Lrrouna
fvsfi-n

Commanding General
U. S. Army Signal Missile

Support Agency
White Sands Missile Range
New Mexico 88002

Commanding Officer
U. S. Transporation Materiel

Command
12th and Spruce Streets
St. Louis 66, Missouri

ouwiii£Liiu_m££ y-i x j. -i-»- *- x

U. R- Armv Sisnal Electronic
Research Unit

P. 0. Box 205
Mountain View, California

Commanding Officer
U. S. Army Signal Avionics

Field Office
P. 0. Box 209
St. Louis 66, Missouri

Commanding Officer
U. S. Army Signal Engineering

Agency
Arlington Hall Station
Arlington, Virginia

Commanding General
U. S. Army Electronics Command
ATTN: AMSEL-CB
Fort Monmouth, New Jersey

Commanding Officer
U. S. Army Electronics Research

and Development Laboratory
ATTN: Data Equipment Branch
Fort Monmouth, New Jersey

Commanding Officer
U. S. Army Transporation

Research Command
Fort Eustis, Virginia 236oU

Commanding General
U. D. ^UlllUfclO LICVC±upiUCll^D

Command
Fort Belvoir, Virginia 22060

Commanding General
U. S. Continental Army Command
Fort Monroe, Virginia 23351

U. S. Army Artillery & Guided
Missile School

Fort Sill, Oklahoma 73503

Commandant
u. .Rimy

School
Redstone Arsenal, Alabama
35809

Commandant
U. S. Army Signal Corps School
ÄTTW : unicer bcpai oiiicnu

lUT

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

1 Army Research Office
30i*5 Columbia Pike
Arlington, Virginia 2220*1

1 Commanding Officer
Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 2TT06

1 Commandant
U. S. Army Command and General

Staff College
ATTN: Computing Facility
Fort Leavenworth, Kansas 66027

1 Superintendent
U. S. Military Academy
Professor of Ordnance
West Point, New York IO996

1 Commanding General
ATTN: Computing Facility
Fort George G. Meade, Maryland

1 Commanding Officer
U. S. Army Major Item Data

Agency
Letterkenny Army Depot
Chambersburg, Pennsylvania
17201

1 Contracting Officer
Charlotte Ordnance Missile

Plant
1820 Statesville Avenue
Charlotte, North Carolina
28206

3 Chief, Bureau of Naval Weapons
ATTN: DLI-3
Department of the Navy
Washington, D. C. 20360

Commander
U. S. Navy Ordnance Laboratory
ATTN: Library
White Oak
Silver Spring, Maryland 20910

Commanding Officer
U. S. Naval Ordnance Laboratory
Corona, California 91T20

Commander
U. S. Naval Ordnance Test

Station
China Lake, California 93357

Superintendent
U. S. Naval Postgraduate School
ATTN: Technical Reports Section
Monterey, California 93900

Director
U. S. Naval Research Laboratory
ATTN: Mr. Nassetta
Washington, D. C. 20390

Commander
U. S. Naval Weapons Laboratory
ATTN: Computation & Analysis

Branch
Dahlgren, Virginia 22UU8

Chief of Naval Research
Department of the Navy
Washington, D. C.

Chief of Naval Operations
Department of the Navy
Washington, D. C. 20360

Commanding Officer and Director
David W. Taylor Model Basin
Washington, D. C. 20007

1U8

No. of
Conies Organization

No. of
Copies Organization

Chief, Bureau of Yards & Docks
ATTN: Data Processing and

Analysis Branch
Department of _/> J-T-

n
one 11 a vy

r. pmfin

1 Chief, Bureau of Ships
ATTN: Computing Facility
Department of the Navy
Washington, D. C. 203b0

1 Superintendent
TT Q AToirol Ar*arl*=>Tmr \J * KJ » 1IU V ^b-l- 1»*- u.^.^. ii^j

ATTN: Weapons Department
Annapolis, Maryland

1 Commanding Officer
U. S. Naval Air Development

Center
Trt"U I« «-i TT-J ~\ ~\ ö Danio sir T iron *i o U U1J.IJ.O V JL _L_L^: j -L ^lAlXQJ -1- v uiiJ. <-*

189T1*

1 Commanding Officer
U. S. Naval Air Test Center
ATTN: Armament Test
Patuxent River, Maryland 20Ö70

Director
U. S. Naval Supersonic Lab
Massachusetts Institute of

rPo r*Vin rsl r\cr\r

ATTN: Computer Facility
560 Memorial Drive
Cambridge, Massachusetts

Commander

02139

T?-v-r\o -vi man +• Rta+.i AKI

ATTN: Applied Math Office,
Code 502

Annapolis, Maryland

Commanding Officer
Fleet Operations Control

IjCll UCX

U. Si Pacific Fleet
F. N. Quinn
Navy No. 509
San Francisco FPO, California

FJSRL, OAR
TTOATTi A ^n^^r»1r UOiHT rtUcaUClliJ

Colorado 808U0

2 Commander
U. S. Naval Missile Center
ATTN: Simulation Branch

Systems Department
Range Operations

TI~1 ~ 4- Mii^ii r uiu u 1'iu.gu.,

Department uoae xuu
foli'f/sTOio Q^nlii v>a 1—LJ.W1H-1.U. .• _»^ ' -»-

Commanding Officer
U. S. Naval Radiological

Defense Laboratory
San Francisco, California
9^135

AEDC
Arnold AFB
Tennessee

u„ n^rr,A TTQA (nrin _

•J= F= Cunningham)
Boiling AFB
Washington, D. C. 20332

AFFTC (FTTSD)
Edwards AFB

TAWC (OA)
Eglin AFB
Florida 325^2

lU9

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

AFCRL

Moo a a nhnc *=»+.+. c; 01 7 "31

AFMDC (MDCS)
Holloman AFB
New Mexico 88330

Director
Mo-f-n /-in o 1 Ao-rnnon+i r*<5 on fl
HO.UX Uli CJ—1- J1V* -L Uliuwvi ^«^ *_~* —

Space Administration
Lewis Research Center
ATTN: Computer Facility
Cleveland Airport
Cleveland, Ohio 4U135

TAC (0A)
T ~n «if A T7D

V-i •rcn m a 23365

1 AUL (3T-AUL-60-118)
Maxwell AFB
Alabama 36112

1 ASD (Digital Computation Branch)2
Wright-Patterson AFB
Ohio 1M33

1 AFIT (MCLI)
Wright-Patterson AFB
Ohio U5U33

Annex 2
225 D Street, S. E.
Washington, D. C. 20333

Hq, USAF (AFAAC)
Washington, D. C.
20330

Director
N at i on al Ae ron aut i c s an d

Space Administration
Flight Research Center
ATTN: Computer Facility
Box 273
Edwards, California

Di rector
National Aeronautics and

Space Administration
Goddard Space Flight Center
ATTN: Tracking & Data Systems

Computer Operations Br
Data Systems Div

Anacostia Naval Station
1+555 Overlook Avenue, S.W.
Washington 25, D. C.

U. S. Department of Commerce
Bureau of Census
RI in ; uuwpuucr "acii-L^y
Federal Office Building No. 3
Suitland, Maryland

Hq, USAF (AFNIN3)
Washington, D. C.
20330

Director
National Aeronautics and

Space Administration
1520 H Street, N. W.
Washington 25, D. C.

Director
National Bureau of Standards
National Applied Mathematics

Laboratory
ATTN: Miss Marv Stevens

Dr. Franz L. Alt
Computation Laboratory
Washington 25, D. C.

150

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

Director
Burei

ATTN: Dr. S. N. Alexander
Components & Techniques

Section - Data
Processing Systems
Division

232 Dynamometer Building
C—\JC >—

National Bureau of Standards
Department of Commerce
ATTN: William Youden Div 12

305CL
Washington, D. C.

Brookhaven National Laboratory
ATTN: Computer Facility
Upton, New York

Director
Research Analysis Corporation
ATTN: Computer Facility
McLean, Virginia 22101

Applied Physics Laboratory
ATTN: Computer Facility
8621 Georgia Avenue
Silver Spring, Maryland 20910

American Data PruCestsiiig Inc.

1 Aeronautical Chart and Infor-
mation Center

ATTN: Dominic P. Biagioli,
ACCP 1

Sam P. Scott, ACDEG-AO
Second and Arsenal Street
St. Louis, Missouri

1

1 Director
Federal Aviation Agency
National Aviation Facilities

Experimental Station
ATTN: Simulation and Computa- 1

tion Branch
Atlantic City, New Jersey

1 Federal Aviation Agency
ATTN: Data Processing Branch

Aircraft Management
Division, Bureau of
Flight Standards

T-> r\ -o ~„. i nfio

Oklahoma City, Oklahoma

1 Oak Ridge National Laboratory
ATTN: Mr. E. C. Long
P. 0. Box X
Oak Ridge, Tennessee

151

- 1

3T831

22 Floor, Book Tower
Detroit 26, Michigan

Ampex Computer Products Co
9937 Jefferson Boulevard
Culver City, California

E 5 I= DuPont De Nemours, Co
Engineering Department
ATTN: Theodore Baumeister, III
Wilmington 98, Delaware

Engineering Research Associates

1902 W. Minnehaha Avenue
St. Paul, Minnesota

Honneywell Incorporated
ATTN: Mr. Donald M. Catton
1701 Pennsylvania Avenue

UaQhinirt.nr . TV f! .

International Business
Machines Corporation

Engineering Laboratory
ATTN: John Ashley - Customer

TP ~ ~,.4--: ,-~ T

Dep artment
San Jose. California

TM-ormDTT>TTFn-rriTiT TTom
LllüiniDUllUll XJJ.Q1

Copies Organisation
Ho, of
Copies

Massey-Dickenson Company
ATTN: Vicent Foxworth
151 Bearhill Road
Waltman, Massachusetts

M-H Engineering and Research
Center

ATTN: Kenneth Curewitz
151 Needham Street
Newton Highlands 61
Massachusetts

Organization

Columbia University
Electronics Research Laboratory
ATTN: G. S. Bodeen
632 West 125 Street
New York 27, New York

Columbia University
Lewis Cyclation Laboratory
ATTN: Computer Facility
Box 137
Irvington on Hudson, New York

Raytheon Manufacturing Company
P, 0. Box 398
Bedford, Massachusetts 01730

Remington Rand Univac
Division of Sperry Rand Corp.
j_yuu w. uxxegheiiy Avenue

Cornell University
ATTN: John W. Hastie -

Coordinator of Research
Ithaca, New York 14850

Dartmouth College
ATTN: Computation Center
Hanover, New Hampshire

Technitrol Engineering Corp.
1952 E. Alleghany Avenue
Philadelphia 3*+, Pennsylvania

Watson Scientific Computing
Laboratory

6l2 W. Il6th Street
New York 25, New York

California Institute of
Technology

ATTN: R. B. Gilmore -
r>„_„+ -».,-,1 1 ö>» ^Ollip O X UJ.XC x

Pasadena, California 91101»

California Institute of
Technology

Jet Propulsion Laboratory
ATTN: Computer Facility
H800 Oak Grove Drive

California 9110 3

The George Washington University
Logistics Research Project
707 22nd Street, N. W.
wasnxugi/On 1, D. L-.

Georgia Institute of Technology-
Engineering Experiment

Station
ATTN: Rich Electronic Computer

Center
Atlanta 13» Georgia

Harvard University
Computation Laboratory
33 Oxford Street
Cambridge 38, Massachusetts

Indiana University
ATTN: Research Computing

Center
Bloomington, Indiana

152

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

Iowa State University of
irt Te

Engineering Experiment Station
ATTN: Robert M. Stewart, Jr.

Cyclone Computer Lab
Ames, Iowa

1 The Johns Hopkins University
ArnmM. ^onmn+o+n'nn Pon + oy

3Uth and Charles Street
Baltimore, Maryland 21218

1 Lehigh University
ATTN: Computer Facility
Bethlehem, Pennsylvania

1 Marquette University
ATTN: Computing Center
3 515 West Wisconsin Avenue
Milwaukee, Wisconsin

1 Massachusetts Institute of
Technology

Lincoln Laboratory
AmrpM. PAmiMi-fö-p TT a r* "i 1 T +.V

T^YTnirt.on 7^- Massachusetts *_.——— D i-'j -

1 Michigan State College
College of Engineering
ATTN: M. G. Kenney -

/*! U 4 « « T n^Avn^ /-^trrtr

East Lansing, Michigan

1IXU uoaoc: uiio. vi.i JXUJ

Department of Industrial
Engineering

ATTN: Mr. Bander
Columbus, Ohio

Oklahoma State University
The Computing Center
ATTN: D. R. Shreve -

Department of Mathe-
matics

Stillwater, Oklahoma

Oregon State College
ueparoiueiH ui naiiiicuianuo
ATTN: W. E, MiIne
Corvallis, Oregon

Polytechnic Institute of
Brooklyn

ATTN: Mr. Warren Boes
333 Jay Street
Brooklyn, New York 11200

Princeton University
Mathematics Department
Princeton, New Jersey

AT'T'JJ; Commutation Center
Stanford, California 9^305

Missouri School of Mines and
Metallurgy

ATTN: Computer Facility
Rolla, Missouri

University of California
ATTN: D. H. Lehmer
9U2 Hilldale Avenue
Berkeley, California

HCW 1U1U ULl± v >~ J. >-*•*- *JJ

College of Engineering
ATTN: Computation and

Statistical Lab
University Heights
New York, New York 10053

University of Illinois
Department of Mathematics
ATTN: A. H. Taub
Urbana, Illinois

No. of
Copies Organization

DISTRIBUTION LIST

No. of
Copies Organization

uiiivex-sity uf reiinsyxvania

Enffineerinsr
Philadelphia h, Pennsylvania

University of Wisconsin
Numbericai Analysis Department
ATXH : r. o . omi wi
Madison, Wisconsin

Professor R. F. Jackson
University of Delaware
Newark, Delaware

Dr. Bansun Chang
A.C. W _1_W V-» Nil CLil l^X J. V ^

Granada Hills, California

Dr. Steven Lukasik
Stevens Institute of Technology
Davidson Laboratories
Castle Point Station
Hoboken, New Jersey

Dr. C. V. L. Smith
U. S. Atomic Energy Commission
Germantown, Maryland 20767

c/Q Militär^ Attache
Australian Embassy
2001 Connecticut Avenue, N.W.
Washington, D. C. 20008

11 The Scientific Information
r\£*.pi *-**» — Ullitci

Defence Research Staff
British Embassy
3100 Massachusetts Avenue, N.W.
Washington, D. C. 20008

Of Interest to:

C-E-I-R
Projects Office
Turriff Building
ATTN: Winston Riley III
Great West Road
Brentford, Middlesex
England

k Defense Research Member
Canadian Joint Staff
21+50 Massachusetts Avenue, N.W.
Washington, D. C. 20008

Aberdeen Proving Ground

Chief, TIB

Air Force Liaison Office
Marine Corps Liaison Office
Navy Liaison Office
CDC Liaison Office

D & PS Branch Library

15^

Unciassiriea

DOCUMENT CONTROL DATA - R&D
(Security claaaitication of title, body ot abstract and indexing annotation musf be entered when the overall report is classified)

1 . ORIGINATIN G ACTIVITY (Corporate author)

Ballistic Research Laboratories
Aberdeen Proving Ground, Md.

2» REPORT SECURITY CLASSIFICATION

Unclassified
2b GROUP

3. Htrun i i i i t- c

THE FOEAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

4 DESCRIPTIVE NOTES (Type ot report and inclusive dates)

5. ÄUTHUR(^) (LHI name, rirsr name, iruiiajy

Campbell, Lloyd w. and Beck, Glenn A.

6 REPO RT DATE

March 1965
7« TOTAL NO. OF PAGES 76. NO OF REFS

JL5k.
8a. CONTRACT OR GRANT NO. 9«. ORIGINATOR'S REPORT NUMBER(S,)

b. KWOJECT NO.

T Tim li c;m a i L-R

Report No. 1273

96. OTHER REPORT NOfSJ (A ny other numbers that may be assigned
this report)

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U. S. Army Materiel Command
Washington, D. C.

13 ABSTRACT

FORAST is a procedure oriented programming language designed for use on the
ORDVAC and BRLESC computers at BRL. Although it was designed for professional
programmers, FORAST contains sufficient simple concepts to make it usable by a
novice or journeyman. It permits the use of arithmetic formulas, some English
word statements, and each computer accepts its own symbolic or absolute machine
language. The latter feature permits the professional programmer to use the
full power of each computer.

DD MT„ 1473 Uno"l nssi fi pr\

Security Classification

T Tn ^iQGeif-iod

Security Classification

r\ t T WVJ nus
LINK A

ROLE WT

LINK B LINK C

Programming Language
Digital Computer
UCTPOfC <"1~_~..J
UIUIDLKJ OUIUf U L.C I

ORDVAC Computer
Compiler
FORÄST

TWCTCTIPTinwC

einer nit [lunie unu uuoress
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective S200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-'
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
fepOft, e.g., interim, progress, Summary, annual, Of final.
Give the inclusive dates when a specific reporting period is
covered.

"~~'"N Entef the näfne(s) of äUthof(s) as shown On
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7 a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

So, 8c, QL 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.
n_ ftm^.lu A -mnie c»cr»,~vr!>T* vmiDUD/c\. c_. »i__ _rr: :ra. univjiim lui\ o i\crui\i numDi^i\vo;. cuter uic urn-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those
imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ifiaA r>nf* noorc cVioll r^nupct tKrnucrh

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

1 1 A r>C?TD A r~"T. C_»~*- -*« nls.l.art niulnA a hri«f UTlH fflt^fllfll IJ, rt OO I nnV I ' Ail lid a l(auan a.- i £**...£, M .*..»..

summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet
shall be attached.

It is highly desirable that tne aDStraci oi ciassmeu re-
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information in the paragraph, represented as (TS), (S),
(C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Iden-
fiers, such as equipment model designation, trade name, mili-
tary project code name, geographic location, may be used as
key words but win be followed by an indication of technical
context. The assignment of links, rules, and weights is
optional.

Unclassified
Security Classification

